• Title/Summary/Keyword: (D/C) ratio

Search Result 2,556, Processing Time 0.04 seconds

A Study on the Fatigue Crack Propagation Behavior in F.F. Shaft Materials of Vehicle with Small Circular Defect at Variable Temperature (미소원공결함을 갖는 자동차 전류구동축재의 온도변화에 따른 피로크랙전파거동에 관한 연구)

  • Lee, S.R.;Lee, D.G.;Chung, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.185-194
    • /
    • 1998
  • In this study, the rotary bending fatigue test was carried out with two kinds of material, S43C and S50C, using in the Front engine and Front drive wheels(F.F.) of vehicle. The one part of specimens was heated by high frequency induction method(about 1mm depth and $H_RC$ 56~60) and tested environment temperature were $-30^{\circ}C$, $+25^{\circ}C$ and $+80^{\circ}C$ in order to look over the influence of the heat treatment and the temperatures. In the experimented result at $+25^{\circ}C$ and $+80^{\circ}C$, the fatigue life of non-heated specimens were decreased about 35%, but that of heated specimens were decreased about only 5% at $+80^{\circ}C$ more than at $25^{\circ}C$. And in the experiment result at $-30^{\circ}C$ and $+25^{\circ}C$, the non-heated and heated specimens were about 110%, 120% higher fatigue life at $-30^{\circ}C$ than at the $+25^{\circ}C$ each other. On the other hand, the fatigue crack propagation rate of S50C was higher than that of S43C.

  • PDF

Effect of Coagulant addition on Nutrient Removal Efficiency in a Submerged Membrane Bioreactor (응집제의 첨가에 따른 Membrane bioreactor 의 고도처리 효율 연구)

  • Park, Jong-Bu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.235-241
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in the submerged membrane bioreactor by addition of alum directly into aerobic tank. Membrane bioreactor consists of three reactors such as two intermittent anaerobic tanks and the aerobic tank with hollow fiber membrane. The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the membrane bioreactor were 94.0%, 99.1%, 99.9%, 66.9%, and 58.9%, respectively. In addition, The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the membrane bioreactor with alum addition were 93.4%, 99.0%, 99.9%, 63.2%, and 96.8%, respectively. There was little difference between them on the nutrient removal efficiencies except phophorus removal. The estimated sludge production, specific denitrification rate, specific nitrification rate and phosphorus removal content on the membrane bioreactor were 1.76 kgTSS/d, $0.055mgNO_3-N/mgVSS{\cdot}d$, $0.031mgNH_4-N/mgVSS{\cdot}d$, and 0.095 kgP/d, respectively. And The estimated sludge production, specific denitrification rate, specific nitrification rate and phosphorus removal content on the membrane bioreactor with alum addition were 2.90 kgTSS/d, $0.049mgNO_3-N/mgVSS{\cdot}d$, $0.030mgNH_4-N/mgVSS{\cdot}d$, and 0.160 kgP/d, respectively. The alum content added was 1.7 molAl/molP on an average. The increasing ratio of tran-membrane pressure on the membrane bioreactor was $0.0056kgf/cm^2{\cdot}compared$ to $0.0033kgf/cm^2{\cdot}d$ on the membrane bioreactor with alum addition. There was a slightly reduction effect on membrane fouling by alum addition.

Effects of Sputtering Condition on Structural Properties of PZT Thin Films on LTCC Substrate by RF Magnetron Sputtering (저온동시소성세라믹 기판 위에 제작된 PZT 박막의 증착조건이 박막의 구조적 특성에 미치는 영향)

  • Lee, Kyung-Chun;Hwang, Hyun-Suk;Lee, Tae-Yong;Hur, Won-Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.297-302
    • /
    • 2011
  • Recently, low temperature co-fired ceramic (LTCC) technology is widely used in sensors, actuators and microsystems fields because of its very good electrical and mechanical properties, high reliability and stability as well as possibility of making 3D micro structures. In this study, we investigated the effects of sputtering gas ratio and annealing temperature on the crystal structure of $Pb(ZrTi)O_3$ (PZT) thin films deposited on LTCC substrate. The LTCC substrate with thickness of $400\;{\mu}m$ were fabricated by laminating 4 green tapes which consist of alumina and glass particle in an organic binder. The PZT thin films were deposited on Pt / Ti / LTCC substrates by RF magnetron sputtering method. The results showed that the crystallization of the films were enhanced as increasing $O_2$ mixing ratio. At about 25% $O_2$ mixing ratio, was well crystallized in the perovskite structure. PZT thin films was annealed at various temperatures. When the annealing temperature is lower, the PZT thin films become a phyrochlore phase. However, when the annealing temperature is higher than $600^{\circ}C$, the PZT thin films become a perovskite phase. At the annealing temperature of $700^{\circ}C$, perovskite PZT thin films with good quality structure was obtained.

Optimization of the Pt Nanoparticle Size and Calcination Temperature for Enhanced Sensing Performance of Pt-Decorated In2O3 Nanorods

  • Choi, Seung-Bok;Lee, Jae Kyung;Lee, Woo Seok;Ko, Tae Gyung;Lee, Chongmu
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1444-1451
    • /
    • 2018
  • The surface-to-volume ratio of one-dimensional (1D) semiconductor metal-oxide sensors is an important factor for achieving good gas sensing properties because it offers a wide response area. To exploit this effect, in this study, we determined the optimal calcination temperature to maximize the specific surface area and thereby the sensitivity of the sensor. The $In_2O_3$ nanorods were synthesized by using vapor-liquid-solid growth of $In_2O_3$ powders and were decorated with the Pt nanoparticles by using a sol-gel method. Subsequently, the Pt nanoparticle-decorated $In_2O_3$ nanorods were calcined at different temperatures to determine the optimal calcination temperature. The $NO_2$ gas sensing properties of five different samples (pristine uncalcined $In_2O_3$ nanorods, Pt-decorated uncalcined $In_2O_3$ nanorods, and Pt-decorated $In_2O_3$ nanorods calcined at 400, 600, and $800^{\circ}C$) were determined and compared. The Pt-decorated $In_2O_3$ nanorods calcined at $600^{\circ}C$ showed the highest surface-to-volume ratio and the strongest response to $NO_2$ gas. Moreover, these nanorods showed the shortest response/recovery times toward $NO_2$. These enhanced sensing properties are attributed to a combination of increased surface-to-volume ratio (achieved through the optimal calcination) and increased electrical/chemical sensitization (provided by the noble-metal decoration).

Product-Resolved Photodissociations of Iodotoluene Radical Cations

  • Shin, Seung-Koo;Kim, Byung-Joo;Jarek, Russell L.;Han, Seung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.267-270
    • /
    • 2002
  • Photodissociations of o-, m-, and p-iodotoluene radical cations were investigated by using Fourier-transform ion cyclotron resonance (FT-ICR) spectrometry. Iodotoluene radical cations were prepared in an ICR cell by a photoionization charge-transfer method. The time-resolved one-photon dissociation spectra were obtained at 532 nm and the identities of $C_7H_7^+$ products were determined by examining their bimolecular reactivities toward toluene-$d_8$. The two-photon dissociation spectra were also recorded in the wavelength range 615-670 nm. The laser power dependence, the temporal variation, and the identities of $C_7H_7^+$ were examined at 640 nm. The mechanism of unimolecular dissociation of iodotoluene radical cations is elucidated: the lowest barrier rearrangement channel leads exclusively to the formation of the benzyl cation, whereas the direct C-I cleavage channel yields the tolyl cations that rearrange to both benzyl and tropylium cations with dissimilar branching ratios among o-, m-, and p-isomers. With a two-photon energy of 3.87 eV at 640 nm, the direct C-I cleavage channel results in the product branching ratio, [tropylium cation]/[benzyl cation], in descending order, 0.16 for meta >0.09 for ortho >0.05 for para.

A Study of the Fabrication and Enhancement of Film Bulk Acoustic Wave Resonator using Two-Step Deposition Method of Piezoelectric Layer (압전층의 2단 증착법을 이용한 체적 음향파 박막형 공진기의 제작과 성능향상에 관한 연구)

  • Park Sung-Hyun;Chu Soon-Nam;Lee Neung-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.308-314
    • /
    • 2005
  • The 2 GHz film bulk acoustic wave resonator(FBAR), one of the most necessary device of the next generation mobile communication system, consisted of solidly mounted resonator(SMR) structure using Brags reflector, was researched in this paper The FBAR applied SiO$_{2}$ and W had large difference of the acoustic impedance to reflector Al to electrode and ZnO to piezoelectric layer. Specially, the FBAR applied the two-step deposition method to improve the c-axis orientation and increase reproducibility of the fabrication device had good performance. The electrical properties of plasma such as impedance, resistance, reactance, $V_{pp},\;I{pp}$, VSWR and phase difference of voltage and current, was analyzed and measured by RF sensor with the variable experiment process factors such as gas ratio, RF power and base vacuum level about concerning the thickness, c-axis orientation, adhesion and roughness. The FBAR device about the optimum condition resulted reflection loss(S$_{11}$) of -17 dB, resonance frequency of 1.93 GHz, electric-mechanical coefficient(k$_{eff}$) of 2.38 $\%$ and Qualify factor of 580. It was seen better qualify than the common dielectric filter at present and expected on business to the filter device of 2 GHz bandwidth with the MMIC technology.

Analysis of electrical, thermal characteristic of Nano/Micro Epoxy composite (나노/마이크로 에폭시 복합체의 전기적, 열적특성 분석)

  • Jung, Eui-Hwan;Yoon, Jae-Hun;Lim, Kee-Joe;Jeong, Su-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.99-99
    • /
    • 2010
  • Polymer nanocomposite has been attracting much attention as a new insulation material, since homogeneous dispersion of nm-sized inorganic fillers can improve various properties significantly. In this paper, various kinds of epoxy based nanocomposites were made and AC breakdown strength of Nano-TiO2 and micro-silica filler mixture of epoxy based composites were studied by sphere to sphere electrode. Moreover, nano- and micro-filler combinations were adopted as an approach toward practical application of nanocomposite insulation materials. Nano-TiO2 particle size is about 10nm and composites ratio was resin (100) : hardener (82) : accelerator (1.5). AC breakdown test was performed at room temperature (25 [$^{\circ}C$], 80 [$^{\circ}C$] and 100 [$^{\circ}C$] in the vicinity of Tg (90[$^{\circ}C$]). And thermal conductivity were measured by ASTM-D5470.

  • PDF

Effect of acoustic wave on the evaporation/combustion of suspended droplet (음파가 고정액적의 증발/연소에 미치는 영향에 관한 연구)

  • Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.53-60
    • /
    • 2002
  • This paper presents the results of the experimental investigation on the effect of acoustic wave on the combustion of suspended A-1 jet fuel droplets in atmospheric pressure. Experimental results indicate that A-1 jet fuel droplet burning rate constants $k_c$ were independent of initial droplet size and the relative evaporation/burning-rate constant $k_{e'}k_c$(ratio of the acoustically disturbed evaporation/burning-rate constant to the undisturbed evaporation/burning-rate constant) increased remarkably 1.2~1.51times, 1.04~1.42times, for frequency below 100Hz, and sound pressure level above 80dB.

Barium Hexaferrite Thin Films Prepared by the Sol-Gel Method

  • An, Sung-Yong;Lee, Sang-Won;Shim, In-Bo;Yun, Sung-Roe;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2001
  • Nano-crystalline hexaferrite $BaFe_{12}O_{19}$(BaM) thin films have been prepared by the sol-gel method. A solution of Ba-nitrate and Fe-nitrates was dissolved in solvent with the stoichiometric ratio Ba/Fe=1/10. Films were spin-coated onto $SiO_2$Si substrates, dried and then heated in air at various temperatures. In films prepared at a drying temperature $T_d=250^{\circ}C$ and a crystallizing temperature 650${\circ}C$, single-phase BaM was obtained. High coercivities were obtained in these nano-crystalline thin films, 4~5.5 kOe for hexaferrite. Polycrystalline BaM/$SiO_2$/Si(100) thin films were characterized by Rutherford backscattering (RBS), thermogravimetry (TGA), differential thermal analysis (DTA), x-ray diffraction (XRD), and vibrating sample magnetometry (VSM), as well as Fourier transform infrared spectroscopy (FTIR). The perpendicular coercivity $H_{C\bot}$ and in-plane coercivity $H_{CII}$ after annealing at 650${\circ}C$ for 2 hours were 4766 Oe and 4480 Oe, respectively, at room temperature, under a maximum applied field of 10 kOe.

  • PDF

Drying and Low Temperature Storage System for Agricultural Products Using the Air to Air Heat Pump (I) - Drying Performance - (히트펌프를 이용한 농산물 건조 및 저온저장 시스템 (I) - 건조 성능 -)

  • Kang, Youn-Ku;Han, Chung-Su;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.20-29
    • /
    • 2007
  • Korean farmers have purchased agricultural dryer and low temperature storage system apart. In this study, the system was designed and constructed to investigate the practical application possibility of the air to air heat pump as drying and low temperature storage system for agricultural products with providing basic data. The performance and drying characteristics of the system evaluated by drying red pepper. The value of coefficient of performance of the system for heating was from 1.8 to 2.2 when ambient air temperature varied from 13$^{\circ}C$ to 23$^{\circ}C$. For operating the heat pump as dryer for drying red pepper by setting three drying air temperature of 50, 55 and 60$^{\circ}C$, specific moisture extraction rates meaning amount of energy consumption for removing moisture of 1kg from red pepper were 1.095, 1.017 and 1.094 kg$_{water}$/kWh, respectively. The drying period up to moisture ratio of 0.02 were 31, 26 and 21 hour, respectively. The lightness, redness, yellowness and chroma differences of red pepper dried by the heat pump dryer were lowered than those of red pepper dried by conventional heated air dryer except for yellowness difference at drying air temperature of 60$^{\circ}C$.