• Title/Summary/Keyword: (5/3) transform

Search Result 752, Processing Time 0.025 seconds

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite (Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용)

  • Ryu, Hyun Soo;Lee, Young Seok;Lee, Jong Cheol;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.308-315
    • /
    • 2013
  • In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

An Efficient Lipreading Method Based on Lip's Symmetry (입술의 대칭성에 기반한 효율적인 립리딩 방법)

  • Kim, Jin-Bum;Kim, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.105-114
    • /
    • 2000
  • In this paper, we concentrate on an efficient method to decrease a lot of pixel data to be processed with an Image transform based automatic lipreading It is reported that the image transform based approach, which obtains a compressed representation of the speaker's mouth, results in superior lipreading performance than the lip contour based approach But this approach produces so many feature parameters of the lip that has much data and requires much computation time for recognition To reduce the data to be computed, we propose a simple method folding at the vertical center of the lip-image based on the symmetry of the lip In addition, the principal component analysis(PCA) is used for fast algorithm and HMM word recognition results are reported The proposed method reduces the number of the feature parameters at $22{\sim}47%$ and improves hidden Markov model(HMM)word recognition rates at $2{\sim}3%$, using the folded lip-image compared with the normal method using $16{\times}16$ lip-image.

  • PDF

Depth From Defocus using Wavelet Transform (웨이블릿 변환을 이용한 Depth From Defocus)

  • Choi, Chang-Min;Choi, Tae-Sun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-26
    • /
    • 2005
  • In this paper, a new method for obtaining three-dimensional shape of an object by measuring relative blur between images using wavelet analysis has been described. Most of the previous methods use inverse filtering to determine the measure of defocus. These methods suffer from some fundamental problems like inaccuracies in finding the frequency domain representation, windowing effects, and border effects. Besides these deficiencies, a filter, such as Laplacian of Gaussian, that produces an aggregate estimate of defocus for an unknown texture, can not lead to accurate depth estimates because of the non-stationary nature of images. We propose a new depth from defocus (DFD) method using wavelet analysis that is capable of performing both the local analysis and the windowing technique with variable-sized regions for non-stationary images with complex textural properties. We show that normalized image ratio of wavelet power by Parseval's theorem is closely related to blur parameter and depth. Experimental results have been presented demonstrating that our DFD method is faster in speed and gives more precise shape estimates than previous DFD techniques for both synthetic and real scenes.

Computation of Green's Tensor Integrals in Three-Dimensional Magnetotelluric Modeling Using Integral Equations (적분방정식을 사용한 3차원 MT 모델링에서의 텐서 그린 적분의 계산)

  • Kim, Hee Joon;Lee, Dong Sung
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.41-47
    • /
    • 1994
  • A fast Hankel transform (FHT) algorithm (Anderson, 1982) is applied to numerical evaluation of many Green's tensor integrals encountered in three-dimensional electromagnetic modeling using integral equations. Efficient computation of Hankel transforms is obtained by a combination of related and lagged convolutions which are available in the FHT. We express Green's tensor integrals for a layered half-space, and rewrite those to a form of related functions so that the FHT can be applied in an efficient manner. By use of the FHT, a complete or full matrix of the related Hankel transform can be rapidly and accurately calculated for about the same computation time as would be required for a single direct convolution. Computing time for a five-layer half-space shows that the FHT is about 117 and 4 times faster than conventional direct and multiple lagged convolution methods, respectively.

  • PDF

Linear Scratch Detection and Removal Technique for Old Film Sequences Using Wavelet Shrinkage and Interpolation (고전 영화 복원을 위한 웨이블릿 계수축소와 보간법을 이용한 선형 스크래치 검출 및 제거 기술)

  • Kang, Won-Seok;Lee, Eun-Sung;Kim, Sang-Jin;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.1-9
    • /
    • 2011
  • This paper presents a novel scratch detection and removal approach for old film images in wavelet-domain. Various scratch detection and removal algorithms have been proposed for past decades. However, accurate scratch detection and removal with a moderate amount of computing effort is still a problem because of trade off between the quality of the film and computational load. For overcoming this problem, we first decompose an input image using a 3-level wavelet transform, and then remove the scratch by shrinking wavelet coefficients using linear interpolation. Experimental results show that the proposed algorithm can efficiently detect and remove the scratch in damaged films, and also be incorporated into old film restoration systems.

Efficient Binary Wavelet Reconstruction for Binary Images (이진 영상을 위한 효율적인 이진 웨이블렛 복원)

  • Kang, Eui-Sung
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.4
    • /
    • pp.43-52
    • /
    • 2002
  • A theory of binary wavelets which are performed over binary field has been recently proposed. Binary wavelet transform (BWT) of binary images can be used as an alternative to the real-valued wavelet transform of binary images in image processing applications such as compression, edge detection, and recognition. The BWT, however, requires large amount of computations for binary wavelet reconstruction since its operation is accomplished by matrix multiplication. In this paper, an efficient binary wavelet reconstruction method which utilizes filtering operation instead of matrix multiplication is presented. Experimental results show that the proposed algorithm can significantly reduce the computational complexity of the BWT. For the reconstruction of an $N{\times}N$ image, the proposed technique requires only $2MN^2$ multiplications and $2N(M-1)^2$ additions when the filter length M, while the BWT needs $2N^3$ multiplications and $2N(N-1)^2$ additions.

  • PDF

Fast Intra Coding using DCT Coefficients (DCT 계수를 이용한 고속 인트라 코딩)

  • Kim, Ga-Ram;Kim, Nam-Uk;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.862-870
    • /
    • 2015
  • The RDO (Rate Distortion Optimization) process of HEVC results in good coding efficiency, but relatively requires much encoding time. In order to reduce the encoding time of RDO process, this paper proposes a method of fast intra prediction mode decision using DCT coefficients distributions and the existence of DCT coefficients. The proposed fast Intra coding sets the number of intra prediction mode candidates to three(3) from the RMD (Rough Mode Decision) process in HM16.0 reference SW and reduces the number of candidates one more time by investigating DCT coefficients distribution. After that, if there exists a quantized DCT block having all zero coefficient values for a specific candidate before the RDO process, the candidate is chosen without the RDO process. The proposed method reduces the encoder complexity on average 46%, while the coding efficiency is 2.1% decreased compared with the HEVC encoder.

Design of Architecture of Programmable Stack-based Video Processor with VHDL (VHDL을 이용한 프로그램 가능한 스택 기반 영상 프로세서 구조 설계)

  • 박주현;김영민
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.4
    • /
    • pp.31-43
    • /
    • 1999
  • The main goal of this paper is to design a high performance SVP(Stack based Video Processor) for network applications. The SVP is a comprehensive scheme; 'better' in the sense that it is an optimal selection of previously proposed enhancements of a stack machine and a video processor. This can process effectively object-based video data using a S-RISC(Stack-based Reduced Instruction Set Computer) with a semi -general-purpose architecture having a stack buffer for OOP(Object-Oriented Programming) with many small procedures at running programs. And it includes a vector processor that can improve the MPEG coding speed. The vector processor in the SVP can execute advanced mode motion compensation, motion prediction by half pixel and SA-DCT(Shape Adaptive-Discrete Cosine Transform) of MPEG-4. Absolutors and halfers in the vector processor make this architecture extensive to a encoder. We also designed a VLSI stack-oriented video processor using the proposed architecture of stack-oriented video decoding. It was designed with O.5$\mu\textrm{m}$ 3LM standard-cell technology, and has 110K logic gates and 12 Kbits SRAM internal buffer. The operating frequency is 50MHz. This executes algorithms of video decoding for QCIF 15fps(frame per second), maximum rate of VLBV(Very Low Bitrate Video) in MPEG-4.

  • PDF