• Title/Summary/Keyword: (진공)

Search Result 14,883, Processing Time 0.036 seconds

Crystal Structures of Dehydrated Partially $Sr^{2+}$-Exchanged Zeolite X, $Sr_{31}K_{30}Si_{100}A1_{92}O_{384}\;and\;Sr_{8.5}TI_{75}Si_{100}AI_{92}O_{384}$ (부분적으로 스트론튬이온으로 교환되고 탈수된, 제올라이트 X의 결정구조)

  • Kim Mi Jung;Kim Yang;Seff Karl
    • Korean Journal of Crystallography
    • /
    • v.8 no.1
    • /
    • pp.6-14
    • /
    • 1997
  • The crystal structures of $Sr_{31}K_{30}-X\;(Sr_{31}K_{30}Si_{100}A1_{92}O_{384};\;a=25.169(5) {\AA}$) and $Sr_{8.5}Tl_{75}-X (Sr_{8.5}Tl_{75}Si_{100}A1_{92}O_{384};\;a=25.041(5) {\AA}$) have been determined by single-crystal X-ray diffraction techniques in the cubic space group $\=F{d3}\;at\;21(1)^{\circ}C$. Each crystal was prepared by ion exchange in a flowing stream of aqueous $Sr(ClO_4)_2\;and\;(K\;or\;T1)NO_3$ whose mole ratio was 1 : 5 for five days. Vacuum dehydration was done at $360^{\circ}C$ for 2d. Their structures were refined to the final error indices $R_1=0.072\;and\;R_w=0.057$ with 293 reflections, and $R_1= 0.058\;and\;R_w=0.044$ with 351 reflections, for which $I>2{\sigma}(I)$, respectively. In dehydrated $Sr_{31}K_{30}-X,\;all\;Sr^{2+}$ ions and $K^+$ ions are located at five different crystallographic sites. Six-teen $Sr^{2+}$ ions per unit cell are at the centers of the double six-rings (site I), filling that position. The remaining 15 $Sr^{2+}$ ions and 17 $K^+$ ions fill site II in the supercage. These $Sr^{2+}$ and $K^+$ ions are recessed ca $0.45{\AA}\;and\;1.06{\AA}$ into the supercage, respectively, from the plane of three oxygens to which each is bound. ($Sr-O=2.45(1){\AA}\;and\;K-O=2.64(1){\AA}$) Eight $K^+$ ons occupy site III'($K-O=3.09(7){\AA}\;and\;3.11(10){\AA}$) and the remaining five $K^+$ ions occupy another site III'($K-O=2.88(7){\AA}\;and\;2.76(7){\AA}$). In $Sr_{8.5}Tl_{75}-X,\;Sr^{2+}\;and\;Tl^+$ ions also occupy five different crystallographic sites. About 8.5 $Sr^{2+}$ ions are at site I. Fifteen $Tl^+$ ions are at site I' in the sodalite cavities on threefold axes opposite double six-rings: each is $1.68{\AA}$ from the plane of its three oxygens ($T1-O=2.70(2){\AA}$). Together these fill the double six-rings. Another 32 $Tl^+$ ions fill site II opposite single six-rings in the supercage, each being $1.48{\AA}$ from the plane of three oxygens ($T1-O=2.70(1){\AA}$). About 18 $Tl^+$ ions occupy site III in the supercage ($T1-O=2.86(2){\AA}$), and the remaining 10 are found at site III' in the supercage ($T1-O=2.96(4){\AA}$).

  • PDF

Cohort Observation of Blood Lead Concentration of Storage Battery Workers (축전지공장 근로자들의 혈중 연농도에 대한 코호트 관찰)

  • Kim, Chang-Yoon;Kim, Jung-Man;Han, Gu-Wung;Park, Jung-Han
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.3 s.31
    • /
    • pp.324-337
    • /
    • 1990
  • To assess the effectiveness of the interventions in working environment and personal hygiene for the occupational exposure to the lead, 156 workers (116 exposed subjects and 40 controls) of a newly established battery factory were examined for their blood lead concentration (Pb-B) in every 3 months up to 18 months. Air lead concentration (Pb-A) of the workplaces was also checked for 3 times in 6 months interval from August 1987. Environmental intervention included the local exhaust ventilation and vacuum cleaning of the floor. Intervention of the personal hygiene included the daily change of clothes, compulsory shower after work and hand washing before meal, prohibition of cigarette smoking and food consumption at the work site and wearing mask. Mean Pb-B of the controls was $21.97{\pm}3.36{\mu}g/dl$ at the preemployment examination and slightly increased to $22.75{\pm}3.38{\mu}g/dl$ after 6 months. Mean Pb-B of the workers who were employed before the factory was in operation (Group A) was $20.49{\pm}3.84{\mu}g/dl$ on employment and it was increased to $23.90{\pm}5.30{\mu}g/dl$ after 3 months (p<0.01). Pb-B was increased to $28.84{\pm}5.76{\mu}g/dl$ 6 months after the employment which was 1 month after the initiation of intervention program. It did not increase thereafter and ranged between $26.83{\mu}g/dl\;and\;28.28{\mu}g/dl$ in the subsequent 4 tests. Mean Pb-B of the workers who were employed after the factory had been in operation but before the intervention program was initiated (Group B) was $16.58{\pm}4/53{\mu}g/dl$ before the exposure and it was increased to $28.82{\pm}5.66{\mu}g/dl$(P<0.01) in 3 months later (1 month after the intervention). The values of subsequent 4 tests remained between 26.46 and $28.54{\mu}g/dl$. Mean Pb-B of the workers who were employed after intervention program had been started (Group C) was $19.45{\pm}3.44{\mu}g/dl$ at the preemployment examination and gradually increased to $22.70{\pm}4.55{\mu}g/dl$ after 3 months(P<0.01), $23.68{\pm}4.18{\mu}g/dl$ after 6 months, and $24.42{\pm}3.60{\mu}g/dl$ after 9 months. Work stations were classified into 4 parts according to Pb-A. The Pb-A of part I, the highest areas, were $0.365mg/m^3$, and after the intervention the levels were decreased to $0.216mg/m^3\;and\;0.208mg/m^3$ in follow-up tests. The Pb-A of part II was decreased from $0.232mg/m^3\;to\;0.148mg/m^3,\;and\;0.120mg/m^3$ after the intervention. Pb-A of part III and W was tested only after intervention and the Pb-A of part III were $0.124mg/m^3$ in Jannuary 1988 and $0.081mg/m^3$ in August 1988. The Pb-A of part IV not stationed at one place but moving around, was $0.110mg/m^3$ in August 1988. There was no consistent relationship between Pb-B and Pb-A. Pb-B of the group A and B workers in the part of the highest Pb-A were lower than those of the workers in the parts of lower Pb-A. Pb-B of the workers in the part of the lowest Pb-A incerased more rapidly. Pb-B of group C workers was the highest in part I and the lowest in part IV. These findings suggest that Pb-B is more valid method than Pb-A for monitoring the health of lead workers and intervention in personal hygiene is more effective than environmental intervention.

  • PDF

Research for Space Activities of Korea Air Force - Political and Legal Perspective (우리나라 공군의 우주력 건설을 위한 정책적.법적고찰)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.135-183
    • /
    • 2003
  • Aerospace force is a determining factor in a modem war. The combat field is expanding to space. Thus, the legitimacy of establishing aerospace force is no longer an debating issue, but "how should we establish aerospace force" has become an issue to the military. The standard limiting on the military use of space should be non-aggressive use as asserted by the U.S., rather than non-military use as asserted by the former Soviet Union. The former Soviet Union's argument is not even strongly supported by the current Russia government, and realistically is hard to be applied. Thus, the multi-purpose satellite used for military surveillance or a commercial satellite employed for military communication are allowed under the U.S. principle of peaceful use of space. In this regard, Air Force may be free to develop a military surveillance satellite and a communication satellite with civilian research institute. Although MTCR, entered into with the U.S., restricts the development of space-launching vehicle for the export purpose, the development of space-launching vehicle by the Korea Air Force or Korea Aerospace Research Institute is beyond the scope of application of MTCR, and Air Force may just operate a satellite in the orbit for the military purpose. The primary task for multi-purpose satellite is a remote sensing; SAR sensor with high resolution is mainly employed for military use. Therefore, a system that enables Air Force, the Korea Aerospace Research Institute, and Agency for Defense Development to conduct joint-research and development should be instituted. U.S. Air Force has dismantled its own space-launching vehicle step by step, and, instead, has increased using private space launching vehicle. In addition, Military communication has been operated separately from civil communication services or broadcasting services due to the special circumstances unique to the military setting. However, joint-operation of communication facility by the military and civil users is preferred because this reduces financial burden resulting from separate operation of military satellite. During the Gulf War, U.S. armed forces employed commercial satellites for its military communication. Korea's participation in space technology research is a little bit behind in time, considering its economic scale. In terms of budget, Korea is to spend 5 trillion won for 15 years for the space activities. However, Japan has 2 trillion won annul budget for the same activities. Because the development of space industry during initial fostering period does not apply to profit-making business, government supports are inevitable. All space development programs of other foreign countries are entirely supported by each government, and, only recently, private industry started participating in limited area such as a communication satellite and broadcasting satellite, Particularly, Korea's space industry is in an infant stage, which largely demands government supports. Government support should be in the form of investment or financial contribution, rather than in the form of loan or borrowing. Compared to other advanced countries in space industry, Korea needs more budget and professional research staff. Naturally, for the efficient and systemic space development and for the prevention of overlapping and distraction of power, it is necessary to enact space-related statutes, which would provide dear vision for the Korea space development. Furthermore, the fact that a variety of departments are running their own space development program requires a centralized and single space-industry development system. Prior to discussing how to coordinate or integrate space programs between Agency for Defense Development and the Korea Aerospace Research Institute, it is a prerequisite to establish, namely, "Space Operations Center"in the Air Force, which would determine policy and strategy in operating space forces. For the establishment of "Space Operations Center," policy determinations by the Ministry of National Defense and the Joint Chief of Staff are required. Especially, space surveillance system through using a military surveillance satellite and communication satellite, which would lay foundation for independent defense, shall be established with reference to Japan's space force plan. In order to resolve issues related to MTCR, Air Force would use space-launching vehicle of the Korea Aerospace Research Institute. Moreover, defense budge should be appropriated for using multi-purpose satellite and communication satellite. The Ministry of National Defense needs to appropriate 2.5 trillion won budget for space operations, which amounts to Japan's surveillance satellite operating budges.

  • PDF