• Title/Summary/Keyword: (얼라인먼트 스테이지)

Search Result 2, Processing Time 0.016 seconds

Development of Three D.O.F. Alignment Stage for Vaccume Environment (진공용 3 자유도 얼라인먼트 스테이지 개발)

  • 박희재;박종호;한상진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.551-554
    • /
    • 2000
  • Alignment system is a system to locate an object to it's accurate position in multi-d.o.f space. According to process of application, it is need to align an object in 3 or 6 d.o.f. space. And alignment system is used in various environments. Especially in PDP application, alignment process is carried out in vaccume environment. In this paper, we developed 3 d.o.f. alignment system for vaccume environment, performed kinematic analysis and improved it's positional accuracy.

  • PDF

Development of Three D.O.F Alignment Stage for Vacuum Environment (진공용 3자유도 얼라인먼트 스테이지 개발)

  • Han, Sang-Jin;Park, Jong-Ho;Park, Hui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.138-147
    • /
    • 2001
  • Alignment systems are frequently used under various semiconductor manufacturing environment. Particularly in PDP(Plasma Display Panel) manufacturing process, the alignment system is applied to the combining and sealing processes of the upper and lower glass panels of PDP, where these processes are performed in the vacuum chamber of high vacuum and high temperature. In this paper, the XYΘ-alignment stage is developed to align PDP panels. Because of high vacuum and high temperature environment, the alignment chamber has been designed to isolate the inner part of the alignment chamber from the outer environment of high vacuum and high temperature, in which every part of the alignment stage is inserted. As it is difficult to attach feedback sensors to the alignment stage in the alignment chamber, the alignment stage is implemented with the open loop algorithm, where the parallel link structure has been designed using step-motors and ball-screws for structural simplicity. The kinematic analysis is performed to drive the parallel link structure, based on the experiments of actuation-compensation of the alignment stage. For the error compensation, the hyperpatch model has been used to model the errors. From the experiments, the positional accuracy of the alignment stage can be improved significantly.

  • PDF