• Title/Summary/Keyword: ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)

Search Result 4, Processing Time 0.017 seconds

ON INTERVAL VALUED (${\alpha}$, ${\beta}$)-FUZZY IDEA OF HEMIRINGS

  • Shabir, Muhammad;Mahmood, Tahir
    • East Asian mathematical journal
    • /
    • v.27 no.3
    • /
    • pp.349-372
    • /
    • 2011
  • In this paper we define interval valued (${\in}$, ${\in}{\vee}q$)-fuzzy hquasi-ideals, interval valued (${\in}$, ${\in}{\vee}q$)-fuzzy h-bi-ideals, interval valued ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)-fuzzy h-ideals, interval valued ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)-fuzzy h-quasi-ideals, interval valued ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)-fuzzy h-bi-ideals and characterize different classes of hemirings by the properties of these ideals.

N-SUBALGEBRAS OF TYPE (∈, ∈ ∨ q) BASED ON POINT N-STRUCTURES IN BCK/BCI-ALGEBRAS

  • Lee, Kyoung-Ja;Jun, Young-Bae;Zhang, Xiaohong
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.431-439
    • /
    • 2012
  • Characterizations of $\mathcal{N}$-subalgebra of type (${\in}$, ${\in}{\vee}q$) are provided. The notion of $\mathcal{N}$-subalgebras of type ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$) is introduced, and its characterizations are discussed. Conditions for an $\mathcal{N}$-subalgebra of type (${\in}$, ${\in}{\vee}q$) (resp. ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$) to be an $\mathcal{N}$-subalgebra of type (${\in}$, ${\in}$) are considered.

A NEW FORM OF FUZZY GENERALIZED BI-IDEALS IN ORDERED SEMIGROUPS

  • Khan, Hidayat Ullah;Sarmin, Nor Haniza;Khan, Asghar
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.569-596
    • /
    • 2014
  • In several applied disciplines like control engineering, computer sciences, error-correcting codes and fuzzy automata theory, the use of fuzzied algebraic structures especially ordered semi-groups and their fuzzy subsystems play a remarkable role. In this paper, we introduce the notion of (${\in},{\in}{\vee}\bar{q}_k$)-fuzzy subsystems of ordered semigroups namely (${\in},{\in}{\vee}\bar{q}_k$)-fuzzy generalized bi-ideals of ordered semigroups. The important milestone of the present paper is to link ordinary generalized bi-ideals and (${\in},{\in}{\vee}\bar{q}_k$)-fuzzy generalized bi-ideals. Moreover, different classes of ordered semi-groups such as regular and left weakly regular ordered semigroups are characterized by the properties of this new notion. Finally, the upper part of a (${\in},{\in}{\vee}\bar{q}_k$)-fuzzy generalized bi-ideal is defined and some characterizations are discussed.