• Title/Summary/Keyword: 'biological and environmental' section

Search Result 64, Processing Time 0.019 seconds

The Effects and the Development of Backward Course Design in the 'Biology and Environment' Classes of the Elementary School (초등학교 과학 '생물과 환경' 단원에서 백워드 디자인의 적용 효과)

  • Ham, Junghwa;Sim, Jaeho
    • Journal of Science Education
    • /
    • v.41 no.1
    • /
    • pp.80-97
    • /
    • 2017
  • The purpose of this study was to develop understanding-oriented materials based on backward course design model and analyze their effects on 'biology and environment' unit of elementary school science. Backward Design starts from a specification of learning outcomes and decisions on methodology and syllabus are developed from the learning outcomes. This method has a strength maintaining consistency between educational contents-evaluation-learning activities and also promoting student's authentic understanding. The 78 students 6th graders participated in this experiments. Data was collected using project activities, the science academic emotion scale and academic achievement. The collected data was analyzed by t-test and ANCOVA analysis using the SPSS 23 statistical program. The following major conclusions were drawn on the basis of data analysis. First, the experimental group showed a relatively accurate understanding of the contents of science but they could not produce creative output in two project activities. Second, the interaction effect of the instruction based on backward curriculum design and science academic emotion was not significant statistically. Third, the experimental group showed a significant improvement in the academic achievement of 'biology and environment' unit.

Enfluence of the Number of the Lower Scaffold Limbs in Slender Spindle Form on the Tree Growth and Development of 'Fuji' Apple Trees ('후지' 사과나무 세장방추형에서 하단측지수가 수체생육에 미치는 영향)

  • Park, Moo-Yong;Yang, Sang-Jin;Park, Jeung-Kwan;Choi, Dong-Geun;Kang, In-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.258-263
    • /
    • 2007
  • This study was carried out to investigate the effects of number of the lower scaffold limbs on tree growth, light penetration, fruit yield, and fruit quality in slender spindle in 6-year-old 'Fuji'/M.9 apple trees. With regard to the growth by the numbers of the lower scaffold limbs, the width of the tree was wide and the growth of new shoots was increased when the number of the lower scaffold limbs was five. Compare with other treatments, five lower scaffold limbs showed high light-interception on the upper (150 cm above the ground) and middle (100 cm above the ground) canopy. There was no difference in the total number of the flower buds of the spurs according to the number of scaffold limbs, but the number and cross section area of flower bud on the lower canopy (120 cm above the ground) were increased where the number of the lower scaffold limbs was five. Fruit yield was highest in the treated with five lower scaffold limbs and fruit weight tended to increase where the number of the lower scaffold limbs was five or eight. With regard to fruit quality, there showed no difference in fruit shape index, firmness, acid content, Hunter L and b value according to the location of canopy and the number of the lower scaffold limbs, but the content of soluble solids was highest treated with five lower scaffold limbs. Hunter a value indicating fruit color was found to be highest treated with five lower scaffold limbs whose light interception was highest.

Potential of River Bottom and Bank Erosion for River Restoration after Dam Slit in the Mountain Stream

  • Kang, Ji-Hyun;So, Kazama
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.46-46
    • /
    • 2011
  • Severe sediment erosion during floods occur disaster and economic losses, but general sediment erosion is basic mechanism to move sediment from upstream to downstream river. In addition, it is important process to change river form. Check dam, which is constructed in mountain stream, play a vital role such as control of sudden debris flow, but it has negative aspects to river ecosystem. Now a day, check dam of open type is an alternative plan to recover river biological diversity and ecosystem through sediment transport while maintaining the function of disaster control. The purpose of this paper is to verify sediment erosion progress of river bottom and bank as first step for river restoration after dam slit by cross-sectional shear stress and critical shear stress. Study area is upstream reach of slit check dam in mountain stream, named Wasada, in Japan. The check dam was slit with two passages in August, 2010. The transects were surveyed for four upstream cross-sections, 7.4 m, 34 m, 86 m, and 150 m distance from dam in October 2010. Sediment size was surveyed at river bottom and bank. Sediment of cobble size was found at the wetted bottom, and small size particles of sand to medium gravel composed river bank. Discharge was $2.5\;m^3/s$ and bottom slope was 0.027 m/m. Excess shear stress (${\tau}_{ex}$) was calculated for hydraulic erosion by subtracting the values of critical shear stress (${\tau}_{c}$) from the value of shear stress (${\tau}$) at river bottom and bank (${\tau}_{ex}=\tau-{\tau}_c$). Shear stress of river bottom (${\tau}_{bottom}$) was calculated using the cross-sectional shear stress, and bank shear stress (${\tau}_{bank}$) was calculated from the method of Flintham and Carling (1988). $${\tau}_{bank}={\tau}^*SF_{bank}((B+P_{bed})/(2^*P_{bank}))$$ where $SF_{bank}=1.77(P_{bed}/p_{bank}+1.5)^{-1.4}$, B is the water surface width, $P_{bed}$ and $P_{bank}$ are wetted parameter of the bed and bank. Estimated values for ${\tau}_{bottom}$ for a flow of $2.5\;m^3/s$ were lower as 25.0 (7.5 m cross-section), 25.7 (34 m), 21.3 (86 m) and 19.8 (150 m), in N/$m^2$, than critical shear stress (${\tau}_c=62.1\;N/m^2$) with cobble of 64 mm. The values were insufficient to erode cobble sediment. In contrast, even if the values of ${\tau}_{bank}$ were lower than the values for ${\tau}_{bottom}$ as 18.7 (7.5 m), 19.3 (34 m), 16.1 (86 m) and 14.7 (150 m), in N/$m^2$, excess shear stresses were calculated at the three cross-sections of 7.5 m, 34 m, and 86 m distances compare with ${\tau}_c$ is 15.5 N/$m^2$ of 16mm gravel. Bank shear stresses were sufficient for erosion of the medium gravel to sand. Therefore there is potential to erode lateral bank than downward erosion in a flow of $2.5\;m^3/s$. Undercutting of the wetted bank can causes bank scour or collapse, therefore this channel has potential to become wider at the same time. This research is about a potential of sediment erosion, and the result could not verify with real data. Therefore it need next step for verification. In addition an erosion mechanism for river restoration is not simple because discharge distribution is variable by snow-melting or rainy season, and a function for disaster control will recover by big precipitation event. Therefore it needs to consider the relationship between continuous discharge change and sediment erosion.

  • PDF

The Differences of Zooplankton Dynamics in River Ecosystems with and without Estuary Dam in River Mouth (하구언 댐 유무에 따른 강 생태계에서의 동물플랑크톤 동태의 차이)

  • Kim, Hyun-Woo;Lee, Hak-Young
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.273-284
    • /
    • 2007
  • The spatial and temporal zooplankton dynamics were examined along ca. 100-km section of the middle to lower Seomjin River (without estuary dam in river mouth) and Youngsan River (with estuary dam in river mouth) systems during study periods (2004. Nov.${\sim}$2006. Aug.) based on a monthly sampling intervals. The spatial variation of zooplankton biomass at both river ecosystems was distinct. There was considerable longitudinal variation in total zooplankton abundance in Youngsan R. stretch. The increase in total zooplankton abundance were observed along the longitudinal stretch toward the estuary dam. In contrast, there were not statistically significant longitudinal differences in total zooplankton abundance in Seomjin R. stretch. In Youngsan R. stretch, average abundance of total zooplankton (average ranges: $199{\sim}817$ Ind. $L^{-1}$ at 3 sampling sites, n=20) were nearly $4{\sim}60$ fold higher than that of Seomjin R. stretch (average ranges: $12{\sim}43$ Ind. $L^{-1}$ at 4 sampling sites, n=20). Relative abundance of rotifers (over 80% of total zooplankton abundance) at the whole sampling sites in Youngsan R. stretch were Much higher than that of the Seomjin R. stretch. The most abundant rotifers were Polyarthra spp., Brachionus spp., Colurella spp., and Keratella spp. at the both river ecosystems. In Seomjin R. stretch, copepods carbon biomass sharply increased toward in river mouth (over 40% of total zooplankton carbon biomass). Average ranges of total zooplankton filtering rates for phytoplankton at both river ecosystems varied from 21.2 to 92.9 mL $L^{-1}\;D^{-1}$ in Youngsan R. stretch and from 2.1 to 2.6 mL $L^{-1}\;D^{-1}$ in Seomjin R. stretch. Considering the zooplankton filtering rates, zooplankton as grazers of phytoplankton in Youngsan R. stretch seemed to play the more important role in planktonic food web than that of the Seomjin R. stretch.