• Title/Summary/Keyword: $sod2^{+}$

Search Result 2,065, Processing Time 0.036 seconds

Activity of Superoxide dismutase(SOD) by fermented soybean (발효 대두 식품의 Superoxide dismutase(SOD) 활성)

  • 류병호;박종옥;김의숙;임복규
    • Journal of Life Science
    • /
    • v.11 no.6
    • /
    • pp.574-581
    • /
    • 2001
  • This study was performed to evaluate the inhibition effects of fermented soybean on lipid perosidation and antioxidative relative enzyme activity. in vivo. Fermented soybean was induced the high SOD activity, while significantly inhibited on the peroxide value of linoleic acid and lipid perxidation from rat microsome induced by Fe$^{2+}$ ascorbate system, Sprague-Dawley(SD) male rats were fed basic diet, and experimental diets group added 200 or 500 mg/kg fermented soybean for 2 weeks. The effect of fermented soybean is also significantly increased catalase and glutathione peroxidase activities, while significantly inhibited the lipid peroxidation of rat liver microsome in a dose dependent manner. Therefore, these results suggest that fermented soybean has antioxidative activity which is related enzyme to prevention of oxidative stress.s.

  • PDF

Effects of Calcium and Nitrogen on the Growth and Antioxidative Enzyme Activity in Soybean (Glycine max) under Saline Condition

  • Bae, Jeong-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.29 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • Growth of G. max treated with $NO_3^-$-N was decreased by high NaCl treatments, but $NH_4NO_3$-fed plants showed good growth with enhanced activity of antioxidative enzymes (SOD and APX). Especially, activity of APX was higher in 5 mM $NH_4NO_3$-fed plants than other types of N-supplied plants throughout the stress period. Higher SOD activity under salt stress was accompanied by increase in APX activity in 5 mM $NH_4NO_3$-fed plants. Similarly, application of calcium confirmed somewhat positive effects on growth. Salt-treated soybean plants showed the best growth response with the increase of SOD and APX activity at an additional 5 mM calcium treatment. Especially, the increase of SOD activity through the strengthened CuZn-SOD isoform was remarkable.

오미자(Schizandra Chinesis Baillon)추출물의 분획별 항상화활성 효과

  • Kim, Ji-Eun;Hwang, Hyeon-Ik;Lee, In-Sun;Mun, Hye-Yeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.317-320
    • /
    • 2002
  • To search for antioxidant compounds from plant resources, ethanol extracts of 10 plants species were investigated using DPPH method and SOD activity by NBT method. The highest activity was shown in the ethanol extracts of Schizandra Chinesis Baillon. And than, antioxidant effects and total polyphenol concentration were investigated in solvent fraction of ethanol extracts from Schizandra Chinesis Baillon. The DPPH inhibitory activity and SOD activity of ethyl acetate fraction (DPPH 51.6%, SOD 66.2%) and butanol fraction(DPPH 60.7%, SOD 67.4%) showed strong biological activities.

  • PDF

간장내 Superoxide Dismutase 측정법

  • 임동윤;고석태
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.149-149
    • /
    • 1993
  • 목적:동식물세포에는 superoxide(0$_{-2}$)의 불균화 반응을 촉매하는 superoxide dismutase (SOD)가 존재한다. 이 효소의 생리적 의의는 지금까지도 명확하게 되어있지 않는면이 많지만, 그 의의를 명확하게 하기위해서도 측정법의 확립이 필요하다. 방법: SOD측정 방법으로는 1) Cytochrome C method 2) Nitroblue tetrazoliun method (NBT법) 3) 면역학적 방법 4) 화학발광법 등이 있다. 실험 재료는 흰쥐, mouse, 토끼의 간을 이용하였으며, 또한, 노화 및 암세포를 이용한 방법을 이용하였다. 결과: Cytochrome C 방법을 통해서 각 장기조직 (신장, 간장, 폐)에서 SOD를 측정하였으며 SOD 활성이 낮은 암조직이나 배양세포에서는 NBT 방법이 측정방법으로 적합한 것으로 나타났으며 ,간장세포내에서의 SOD의 존재부위를 확인하는 방법으로는 면역 황금 표지방법을 사용하므로 간장 mitochondria 내에 Cu, Zn-SOD가 존재함을 알 수 있었다.

  • PDF

Development of Production Technology for Mixed Lines Sod in Zoysiagrass (한국잔디류의 혼식뗏장 생산기술 개발)

  • 이재필;김종빈;김두환
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • This study was conducted to make the utmost use of the good traits and to improve the poor traits of zoysiagrass through the production technology for mixed lines sod in addition to breeding. Mixed lines sod was produced by mixing broad or middle leaf line with narrow leaf line by volume, a ratio of 1 to 2. The mixed lines sod of zoysiagrass was superior to the single ling sod, which is used commonly, for the establishment rate, coverage rate, shoot density, texture, leaf color, dormancy period cnd color, and visual quality.

  • PDF

Construction of Gene-Specific Primers for Various Antioxidant Isoenzyme Genes and Their Expressions in Rice (Oryza sativa L.) Seedlings Obtained from Gamma-irradiated Seeds

  • Kim, Jin-Hon;Chung, Byung-Yeoup;Kim, Jae-Sung;Wi, Seung-Gon;Yang, Dae-Hwa;Lee, Choon-Hwan;Lee, Myung-Chul
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.115-120
    • /
    • 2004
  • For the expression study of antioxidant isoenzyme genes in rice (Oryza sativa L.) plants, extensive searches for genes of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) isoforms were performed through the GenBank database. The genes for two cytosolic and one plastidic CuZn-SOD, one Fe-SOD, two Mn-SOD, two cytosolic and two chloroplastic (stromal and thylakoid) APX, and three CAT isoforms were available in japonica-type rice. These isoforms were named as cCuZn-SOD1, cCuZn-SOD2, pCuZn-SOD, Fe-SOD, Mn-SOD1, Mn-SOD2, cAPXa, cAPXb, Chl_sAPX, Chl_tAPX, CATa, CATb, and CATc, respectively. Since they shared a high degree of homology in the nucleotide and amino acid sequences, the gene-specific primers for the genes were designed directly from their full-length cDNAs found in the database except for the CATa gene. These primers were used in the RT-PCR analysis to investigate the differential expression of antioxidant isoenzyme genes in rice plants from the seeds irradiated with low doses (2, 4, 8, and 16 Gy) of gamma-radiation. The gammairradiation slightly increased the transcripts of pCuZn-SOD, while those of Fe-SOD, cAPXb, and CATb decreased. However, no substantial differences were observed in the expression of all the isoenzyme genes between the control and irradiated groups. In this study, gene specific primers for thirteen SOD, APX and CAT isoenzymes were constructed from the full-length cDNAs. The results of RT-PCR analysis obtained by using these primers suggests that the expression levels of SOD, APX, and CAT isoenzyme genes in rice seedlings were hardly affected by gamma-irradiation at the seed stage.

  • PDF

Glycation of Copper, Zinc-Superoxide Dismutase and its Effect on the Thiol-Metal Catalyzed Oxidation Mediated DNA Damage

  • Park, Jeen-Woo;Lee, Soo-Min
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.249-253
    • /
    • 1995
  • The nonenzymatic glycation of copper, zinc-superoxide dismutase (Cu,Zn-SOD) led to inactivation and fragmentation of the enzyme. The glycated Cu,zn-SOD was isolated by boronate affinity chromatography. The formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in calf thymus DNA and the generation of strand breaks in pBhiescript plasmid DNA by a metal-catalyzed oxidation (MCO) system composed of $Fe^{3+}$, $O_2$, and glutathione (GSH) as an electron donor was enhanced more effectively by the glycated CU,Zn-SOD than by the nonglycated enzyme. The capacity of glycated Cu,Zn-SOD to enhance damage to DNA was inhibited by diethylenetriaminepentaacetic acid (DETAPAC), azide, mannitol, and catalase. These results indicated that incubation of glycated CU,Zn-SOD with GSH-MCO may result in a release of $Cu^{2+}$ from the enzyme. The released $Cu^{2+}$ then likely participated in a Fenton-type reaction to produce hydroxyl radicals, which may cause the enhancement of DNA damage.

  • PDF

Over-expression of Cu/ZnSOD Increases Cadmium Tolerance in Arabidopsis thaliana

  • Cho, Un-Haing
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.257-264
    • /
    • 2007
  • Over-expression of a copper/zinc superoxide dismutase (Cu/ZnSOD) resulted in substantially increased tolerance to cadmium exposure in Arabidopsis thaliana. Lower lipid peroxidation and $H_2O_2$ accumulation and the higher activities of $H_2O_2$ scavenging enzymes, including catalase (CAT) and ascorbate peroxidase (APX) in transformants (CuZnSOD-tr) compared to untransformed controls (wt) indicated that oxidative stress was the key factor in cadmium tolerance. Although progressive reductions in the dark-adapted photochemical efficiency (Fv/Fm) and quantum efficiency yield were observed with increasing cadmium levels, the chlorophyll fluorescence parameters were less marked in CuZnSOD-tr than in wi. These observations indicate that oxidative stress in the photosynthetic apparatus is a principal cause of Cd-induced phytotoxicity, and that Cu/ZnSOD plays a critical role in protection against Cd-induced oxidative stress.

Fenofibrate decreases radiation sensitivity via peroxisome proliferator-activated receptor ${\alpha}$-mediated superoxide dismutase induction in HeLa cells

  • Liu, Xianguang;Jang, Seong-Soon;An, Zhengzhe;Song, Hye-Jin;Kim, Won-Dong;Yu, Jae-Ran;Park, Woo-Yoon
    • Radiation Oncology Journal
    • /
    • v.30 no.2
    • /
    • pp.88-95
    • /
    • 2012
  • Purpose: The fibrates are ligands for peroxisome proliferator-activated receptor (PPAR) ${\alpha}$ and used clinically as hypolipidemic drugs. The fibrates are known to cause peroxisome proliferation, enhance superoxide dismutase (SOD) expression and catalase activity. The antioxidant actions of the fibrates may modify radiation sensitivity. Here, we investigated the change of the radiation sensitivity in two cervix cancer cell lines in combination with fenofibrate (FF). Materials and Methods: Activity and protein expression of SOD were measured according to the concentration of FF. The mRNA expressions were measured by using real time reverse-transcription polymerase chain reaction. Combined cytotoxic effect of FF and radiation was measured by using clonogenic assay. Results: In HeLa cells total SOD activity was increased with increasing FF doses up to 30 ${\mu}M$. In the other hand, the catalase activity was increased a little. As with activity the protein expression of SOD1 and SOD2 was increased with increasing doses of FF. The mRNAs of SOD1, SOD2, $PPAR{\alpha}$ and $PPAR{\gamma}$ were increased with increasing doses of FF. The reactive oxygen species (ROS) produced by radiation was decreased by preincubation with FF. The surviving fractions (SF) by combining FF and radiation was higher than those of radiation alone. In Me180 cells SOD and catalase activity were not increased with FF. Also, the mRNAs of SOD1, SOD2, and $PPAR{\alpha}$ were not increased with FF. However, the mRNA of $PPAR{\gamma}$ was increased with FF. Conclusion: FF can reduce radiation sensitivity by ROS scavenging via SOD induction in HeLa. SOD induction by FF is related with $PPAR{\alpha}$.

Effete of Ozone Uptake Rate on Photosynthesis and Antioxidant Activity in the Leaves of Betula Species (자작나무류 잎의 오존흡입량이 광합성 및 항산화효소 활성에 미치는 영향)

  • 이재천;한심희;장석성;조경진;김용율
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.72-79
    • /
    • 2002
  • This study was conducted to compare the physiological and biochemical responses of four Betula species in response to ozone, and to find out the relationship between ozone uptake rate and photosynthesis or antioxidant activity. One-year-old seedlings of four Betula sp, B. costata, B. davurica, B. platyphylla var, japonica, and B. ermani, exposed to 100 pub ozone concentration for 8h day$^{-1}$ for 5 weeks in fumigation chamber. Ozone uptake rate, photosynthesis, SOD and GR activity were measured in the leaves of four species once a week. Cumulative ozone uptake rate was largest in the loaves of B. costata(53.8 mmol m$^{-2}$ ), smallest in the leaves of B. davurica(35.5 mmol m$^{-2}$ ). Photosynthesis of four Betula sp. exposed to ozone reduced relative to control, but the photosynthetic responses with changing stomatal conductance were different among species. Ozone exposure increased SOD activities of four species at the early exposing period, but after a critical point SOD activity decreased gradually. GR activity of B. costata was similar to the change of SOD activity, but the others showed the different patterns from B. costata. In conclusion, decreasing both SOD and GR activity at the critical point, B. costata may be sensitive species in response to ozone. In contrast, the others may be resistant species, which gradually increase GR activity following ozone exposure. GR activity was not always in accord with the change of SOD activity against ozone uptake, and the different responses between species were supposed to be affected by the cumulative ozone uptake.