• Title/Summary/Keyword: %24scCO_2%24

Search Result 32, Processing Time 0.026 seconds

Green Supply Chain Network Model: Genetic Algorithm Approach (그린 공급망 네트워크 모델: 유전알고리즘 접근법)

  • Yun, Young Su;Chuluunsukh, Anudari
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • In this paper, we design a green supply chain (gSC) network model. For constructing the gSC network model, environmental and economic factors are taken into consideration in it. Environmental factor is to minimize the $CO_2$ emission amount emitted when transporting products or materials between each stage. For economic factor, the total cost which is composed of total transportation cost, total handling cost and total fixed cost is minimized. To minimize the environmental and economic factors simultaneously, a mathematical formulation is proposed and it is implemented in a genetic algorithm (GA) approach. In numerical experiment, some scales of the gSC network model is presented and its performance is analyzed using the GA approach. Finally, the efficiencies of the gSC network model and the GA approach are proved.

The Neutralization Treatment of Waste Mortar and Recycled Aggregate by Using the scCO2-Water-Aggregate Reaction (초임계이산화탄소-물-골재 반응을 이용한 폐모르타르와 순환골재의 중성화 처리)

  • Kim, Taehyoung;Lee, Jinkyun;Chung, Chul-woo;Kim, Jihyun;Lee, Minhee;Kim, Seon-ok
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.359-370
    • /
    • 2018
  • The batch and column experiments were performed to overcome the limitation of the neutralization process using the $scCO_2$-water-recycled aggregate, reducing its treatment time to 3 hour. The waste cement mortar and two kinds of recycled aggregate were used for the experiment. In the extraction batch experiment, three different types of waste mortar were reacted with water and $scCO_2$ for 1 ~ 24 hour and the pH of extracted solution from the treated waste mortar was measured to determine the minimum reaction time maintaining below 9.8 of pH. The continuous column experiment was also performed to identify the pH reduction effect of the neutralization process for the massive recycled aggregate, considering the non-equilibrium reaction in the field. Thirty five gram of waste mortar was mixed with 70 mL of distilled water in a high pressurized stainless steel cell at 100 bar and $50^{\circ}C$ for 1 ~ 24 hour as the neutralization process. The dried waste mortar was mixed with water at 150 rpm for 10 min. and the pH of water was measured for 15 days. The XRD and TG/DTA analyses for the waste mortar before and after the reaction were performed to identify the mineralogical change during the neutralization process. The acryl column (16 cm in diameter, 1 m in length) was packed with 3 hour treated (or untreated) recycled aggregate and 220 liter of distilled water was flushed down into the column. The pH and $Ca^{2+}$ concentration of the effluent from the column were measured at the certain time interval. The pH of extracted water from 3 hour treated waste mortar (10 ~ 13 mm in diameter) maintained below 9.8 (the legal limit). From XRD and TG/DTA analyses, the amount of portlandite in the waste mortar decreased after the neutralization process but the calcite was created as the secondary mineral. From the column experiment, the pH of the effluent from the column packed with 3 hour treated recycled aggregate kept below 9.8 regardless of their sizes, identifying that the recycled aggregate with 3 hour $scCO_2$ treatment can be reused in real construction sites.

Effect of Smilax china L. Rhizome Extract on Heavy Metal Contents in Rats (청미래 덩굴 뿌리 추출물 투여가 실험동물의 체내 중금속 함량에 미치는 영향)

  • Kang, Hye-Sook;You, Han-Choon;Choi, Yu-Ri;Kim, Hoo-Kyung;Jo, Seon-Mi;Yoon, Byung-Jae
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.2
    • /
    • pp.233-238
    • /
    • 2011
  • Smilax china L. rhizome extract(SCE), called 'Tobokreung' in Korean traditional medicine was investigated the influence on heavy metal contents(particularly Pb, Cd, As, and Hg) in Sprague-Dawley rats for 3 weeks. The test groups were divided into 4 group, normal, control, and SCE feeding groups, SC1(13 mg/kg) and SC2(26 mg/kg), respectively. The three group except normal group, were fed heavy metal such as Pb, Cd, As, and Hg. Body weight gain and the weight of target organs (liver and kidney) were determined and had not shown significant differences. Pb, Cd, and As contents in the kidney of SCE feeding groups were tended to decrease after 3 weeks, and SC2 group showed remarkably decrease of them. In the liver, the 3 heavy metal contents except Cd of SC2 group, were decreased rather than that of control group. Pb contents in the serum and the hair of the SC2 group showed significantly decreasing. All the taken together, we investigated the effect of SCE on the 4 heavy metal contents in rats for 3 weeks, and found out that more dosage of SCE made lower heavy metal contents in vivo, for the first time.

A Study of Dyeing Properties of PET Fabrics under Supercritical CO2 Depending on Test Condition: by Temperature, Pressure, Leveling Time (초임계 유체 염색 조건에 따른 PET 섬유의 염색 특성: 온도별, 압력별, 시간별)

  • Choi, Hyunseuk;Park, Shin;Kim, Taeyoung;Song, Taehyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.1
    • /
    • pp.14-24
    • /
    • 2019
  • In this study, dyeability of PET fabric was investigated depending on dyeing temperature, pressure, and leveling time using laboratory scale supercritical $CO_2(scCO_2)$ dyeing machine. Dyeing temperature, pressure, leveling time were varied from 100, 120, $130^{\circ}C$, 150, 200, 250bar, 40, 60, 80, 100min, respectively. It is proved that the higher temperature of $scCO_2$ dyeing process, the higher K/S value and the lower $L^*$ value, which in turn means the lower amount of dyeing molecules remained after process done. Compared 200bar with 250bar of dyeing pressure, $scCO_2$ dyeing fabrics under 250bar appeared to have a lower $L^*$ value, a higher K/S value than those from 200bar, meaning that dyeing color turns to darker with higher dyeing pressure. The experiments showed that the most ideal condition for $scCO_2$ dyeing process is $120^{\circ}C$, 250bar for 60 - 100min of leveling time.

Zanamivir Oral Delivery: Enhanced Plasma and Lung Bioavailability in Rats

  • Shanmugam, Srinivasan;Im, Ho Taek;Sohn, Young Taek;Kim, Kyung Soo;Kim, Yong-Il;Yong, Chul Soon;Kim, Jong Oh;Choi, Han-Gon;Woo, Jong Soo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.161-169
    • /
    • 2013
  • The objective of this study was to enhance the oral bioavailability (BA) of zanamivir (ZMR) by increasing its intestinal permeability using permeation enhancers (PE). Four different classes of PEs (Labrasol$^{(R)}$, sodium cholate, sodium caprate, hydroxypropyl ${\beta}$-cyclodextrin) were investigated for their ability to enhance the permeation of ZMR across Caco-2 cell monolayers. The flux and $P_{app}$ of ZMR in the presence of sodium caprate (SC) was significantly higher than other PEs in comparison to control, and was selected for further investigation. All concentrations of SC (10-200 mM) demonstrated enhanced flux of ZMR in comparison to control. The highest flux (13 folds higher than control) was achieved for the formulation with highest SC concentration (200 mM). The relative BA of ZMR formulation containing SC (PO-SC) in plasma at a dose of 10 mg/kg following oral administration in rats was 317.65% in comparison to control formulation (PO-C). Besides, the $AUC_{0-24\;h}$ of ZMR in the lungs following oral administration of PO-SC was $125.22{\pm}27.25$ ng hr $ml^{-1}$ with a $C_{max}$ of $156.00{\pm}24.00$ ng/ml reached at $0.50{\pm}0.00$ h. But, there was no ZMR detected in the lungs following administration of control formulation (PO-C). The findings of this study indicated that the oral formulation PO-SC containing ZMR and SC was able to enhance the BA of ZMR in plasma to an appropriate amount that would make ZMR available in lungs at a concentration higher (>10 ng/ml) than the $IC_{50}$ concentration of influenza virus (0.64-7.9 ng/ml) to exert its therapeutic effect.

Neuroprotective Effects of Schisandra chinensis and Ribes fasciculatum Extract on Hydrogen Peroxide-Mediated Oxidative Stress in Neuroblastic SH-SY5Y Cell Line (과산화수소로 유도된 SH-SY5Y 신경세포 사멸에 대한 오미자·칠해목 추출혼합물의 보호효과)

  • Park, Eun-kuk;Han, Kyung-Hoon;Lee, Seung-Hee;Kim, Nam-Ki;Bae, Mun-Hyoung;Seo, Young-Ha;Yong, Yoon-joong;Jeong, Seon-Yong;Choi, Chun-Whan
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.6
    • /
    • pp.865-872
    • /
    • 2018
  • In neuronal cell deaths, oxidative stress is normally implicated with a most of these deaths occurring in neurodegenerative disorders such as the Alzheimer's and Parkinson's diseases. In this study, the neuroprotective effects of Schisandra chinensis (SC) and Ribes fasciculatum (RF) extracts on hydrogen peroxide ($H_2O_2$)-induced oxidative stress in neuroblastic cell line were investigated. For an hour, hydrogen peroxide of $100{\mu}M$ concentration, was induced on neuroblastic cells, causing apoptic cell death. For the neuroprotection, a sample of neuroblastic cells had been pre-treated with SC and RF extracts for 24 hours before application of the hydrogen peroxide. No neurotoxic effects were observed in the cells that had been treated by SC and RF. This prove that the treatment of SC and RF extract prevented apoptotic cell death of neuroblastic cell line exposed to oxidative injury. In addition, applying both SC and RF extracts at a 7:3 ratio increased the neuronal cell survival rate, compared to individual treatments of SC and RF extract. This study suggests that SC and RF extracts may be potential therapeutic agents for the prevention of neuronal cell death.

The Removal of Si3N4 Particles from the Wafer Surface Using Supercritical Carbon Dioxide Cleaning (웨이퍼 표면의 Si3N4 파티클 제거를 위한 초임계 이산화탄소 세정)

  • Kim, Yong Hun;Choi, Hae Won;Kang, Ki Moon;Karakin, Anton;Lim, Kwon Teak
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.157-165
    • /
    • 2018
  • In this study, the removal of $Si_3N_4$ particles from the surface of a silicon wafer was investigated by using supercritical carbon dioxide, the IPA co-solvent and cleaning additive chemicals. First, the solubility of several surfactants and binders in supercritical carbon dioxide solubility and particle dispersibility in the binders were evaluated in order to confirm their suitability for the supercritical cleaning process. Particle removal experiments were carried out with adjusting various process parameters and reaction conditions. The surfactants used in the experiment showed little particle removal effect, producing secondary contamination on the surface of wafers. On the other hand, 5 wt% (with respect to $scCO_2$) of the cleaning additive mixture of trimethyl phosphate, IPA, and trace HF resulted in 85% of particle removal efficiency after $scCO_2$ flowing for 4 minutes at $50^{\circ}C$, 2000 psi, and the flow rate of $15mL\;min^{-1}$.

Characterization of Poly(lactic acid) Foams Prepared with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용하여 제조한 Poly(lactic acid) 발포체의 특성 분석)

  • Shin, Ji Hee;Lee, Hyun Kyu;Song, Kwon Bin;Lee, Kwang Hee
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.685-693
    • /
    • 2013
  • The foams of a poly(lactic acid) modified by the reactive compounding were produced with the batch foaming technique using supercritical $CO_2(scCO_2)$. Experiments were performed at $105{\sim}135^{\circ}C$ and 12~24 MPa. The blowing ratio and foam structure were significantly affected by changing the temperature and pressure conditions in the foaming process. The blowing ratio first increased with increasing foaming temperature and saturation pressure, reached a maximum and then decreased with a further increase in the foaming temperature and saturation pressure. Decreasing the rate of depressurization permitted a longer period of cell growth and therefore larger microcellular structures were obtained.

EFFICACY AND BIOLOGICAL ACTIVITIES OF A NEW ANTI-AGING AGENT OBTAINED FROM ARECA CATECHU

  • Lee, Kun-Kook;Lee, Kwang-Sik;Kim, Jeong-Ha;Jo, Byung-Kee;Choi, Jung-Do
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.24-30
    • /
    • 1998
  • Inhibitory effects of the new material obtained from Areca catechu seed (CC-516) according to a special process, and its applicability to the skin as a cosmetic raw material in terms of its efficacy were presented. Areca catechu extract out of 150 medicinal plants, exhibited high inhibitory effect on the porcine pancreatic elastase ($IC_{50}$ : $40.8{\mu}$g/ml). It also had an inhibitory effect on the human leukocyte elastase ($IC_{50}$ : 48.1$\mu$g/ml), hyaluronidase ($IC_{50}$ : $416{\mu}$g/ml), antioxidative activity ($IC_{50}$ : $45.4\mu$g/ml) and free radical scavenging activity ($SC_{50}$ : $10.2{\mu}$g/ml). The cream contained 3% of CC-516 improved skin hydration above 16.5%. Especially, the skin elasticity increases more than 35% and skin wrinkles decreased more than 23%. The CC-516 was designed to be utilized in cosmetology. The cream containing 3% of this product has not only protecting effect on the skin mechanical properties provided by the collagen and the elastin in the derm but also restructuring effect of scarring or aging tissue.

  • PDF

Optimum Fermentation Conditions and Fermentation Characteristics of Mulberry (Morus alba) Wine (오디(Morus alba) 와인의 최적 발효조건 및 발효 특성)

  • Kim, Yong-Suk;Jeong, Do-Yeong;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.63-69
    • /
    • 2008
  • For the development of mulberry wine, we investigated its optimum fermentation conditions as well as quality changes during fermentation. The physicochemical characteristics of the mulberry fruit used in the study were pH 4.56, 0.50% titratable acidity, and 13.0 $^{circ}Brix$ soluble solids. The mulberry wine fermented with Saccharomyces cerevisiae KCCM 12224 (Sc-24) at 24 $^{circ}Brix$ soluble solids and $26^{circ}C$ showed excellent characteristics in terms of ethanol production, titratable acidity, and redness. The sucrose, fructose, and glucose contents of the mulberry wine drastically decreased with fermentation time. The citric acid content was maintained during the fermentation period, and malic acid decreased, but lactic and succinic acids increased. The cyanidin-3-glucoside content, a major anthocyanin pigment, of the mulberry wine drastically decreased from 195.5 mg% at the initial stage of fermentation to 15.37 mg% at 2 days of fermentation. However, cyanidin-3-rutinoside decreased gradually. In summary, a mulberry wine of high quality was made by fermentation for 8 days at $26^{\circ}C$ using mashed mulberry fruit containing $24^{\circ}Brix$ soluble solids, after adding 200 ppm $K_2S_2O_5$ and inoculating with 3%(v/v) Sc-24.