• Title/Summary/Keyword: $sCO_2$ power cycle

Search Result 64, Processing Time 0.022 seconds

Fabrication of Catalytic Conbustion type Sensor and its Measuring Characteristics (접촉 연소식 가스센서의 제조 및 계측특성)

  • Lee, D.S.;Han, S.D.;Myung, K.S.;Lee, S.H.;Son, Y.M.;Lee, J.D.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.16-22
    • /
    • 1995
  • Catalytic combustion type gas sensor was fabricated by using ${\gamma}-Al_{2}O_{3}$, Pd catalyst and some binders for metane and propane detection. Using the gas sensor, digital gas meter was manufactured and tested for sensing performance. The fabricated sensor had power consumption of 700mW with applied voltage of dc 2V and the output voltage of the sensor was about 700mV for propane of 1,000ppm and 500mV for methane of 1,000ppm. In 10 cycle injection of the gases of 2,400ppm, The digital meter showed good sensitivity, linearity, and reproductivity with precision of ${\pm}25ppm({\pm}1%)$.

  • PDF

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

H2AX Directly Interacts with BRCA1 and BARD1 via its NLS and BRCT Domain Respectively in vitro (H2AX의 BRCA1 NLS domain과 BARD1 BRCT domain 각각과의 in vitro 상호 결합)

  • Bae, Seung-Hee;Lee, Sun-Mi;Kim, Su-Mi;Choe, Tae-Boo;Kim, Cha-Soon;Seong, Ki-Moon;Jin, Young-Woo;An, Sung-Kwan
    • KSBB Journal
    • /
    • v.24 no.4
    • /
    • pp.403-409
    • /
    • 2009
  • H2AX, a crucial component of chromatin, is implicated in DNA repair, cell cycle check point and tumor suppression. The aim of this study was to identify direct binding partners of H2AX to regulate cellular responses to above mechanisms. Literature reviews and bioinformatical tools were attempted intensively to find binding partners of H2AX, which resulted in identifying two potential proteins, breast cancer-1 (BRCA1) and BRCA1-associated RING domain 1 (BARD1). Although it has been reported in vivo that BRCA1 co-localizes with H2AX at the site of DNA damage, their biochemical mechanism for H2AX were however only known that the complex monoubiquitinates histone monomers, including unphosphorylated H2AX in vitro. Therefore, it is important to know whether the complex directly interacts with H2AX, and also which regions of these are specifically mediated for the interaction. Using in vitro GST pull-down assay, we present here that BRCA1 and BARD1 directly bind to H2AX. Moreover, through combinational approaches of domain analysis, fragment clonings and in vitro binding assay, we revealed molecular details of the BRCA1-H2AX and BARD1-H2AX complex. These data provide the potential evidence that each of the BRCA1 nuclear localization signal (NLS) and BARD1 BRCA1 C-terminal (BRCT) repeat domain is the novel mediator of H2AX recognition.

Design of a 100kW-class radial inflow turbine for ocean thermal energy conversion using R32 (R32를 이용한 100kW급 해양온도차발전용 반경류터빈의 설계)

  • Kim, Do-Yeop;Kim, You Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1101-1105
    • /
    • 2014
  • Ocean Thermal Energy Conversion(OTEC) which uses the temperature difference between warm surface sea-water and cold deep sea-water to produce electric power is the promising technology. OTEC is able to be utilized as the $CO_2$ reducing technology by using the consistent temperature differential, while the system efficiency is very low. Thus, the design and development of a efficient turbine is essential to improve the system efficiency for OTEC. In this study, a 100kW-class radial inflow turbine using R32 was designed for OTEC and this turbine's performance was estimated by analysis of CFD. According as the simulation results, turbine's geometry was corrected. The radial inflow turbine satisfying the requirements is designed by the repeated attempts.

Determination of major and minor elements in low and medium level radioactive wastes using closed-vessel microwave acid digestion (밀폐형 극초단파 산분해법을 이용한 중${\cdot}$저준위 방사성폐기물의 성분 원소 분석)

  • Lee Jeong-Jin;Pyo Hyung-Yeal;Jeon Jong-Seon;Lee Chang-Heon;Jee Kwang-Yong;Ji Pyung-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • The conditions are obtained for the decomposition of solid radioactive wastes, including ion exchange resin, zeolite, charcoal, and sludge from nuclear power plant. In the process of decomposing the radioactive wastes was used the microwave acid digestion method with mixed acid. The solution after acid digestion by the following method was colorless and transparent. Each solution was analyzed with ICP-AES and AAS and the recovery yield for 5 different elements added into the simulated radioactive wastes were over $94{\%}$. The elemental analysis of destructive low and medium level radioactive wastes by the proposed microwave acid digestion conditions concerning the chemical characteristics of each radioactive waste are expected to be useful basic data for development of optimal glass formulation.

  • PDF

Characteristics of a Hydrogen Isotope Storage and Accountancy System (수소동위원소 저장 계량 장치 특성 연구)

  • KIM, YEANJIN;JUNG, KWANGJIN;GOO, DAESEO;PARK, JONGCHUL;JEON, MIN-GU;YUN, SEI-HUN;CHUNG, HONGSUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.541-546
    • /
    • 2015
  • Global energy shortage problem is expected to increase driven by strong energy demand growth from developing countries. Nuclear fusion power offers the prospect of an almost infinite source of energy for future generations. Hydrogen isotope storage and delivery system is a important subsystem of a nuclear fusion fuel cycle. Metal hydride is a method of the high-density storage of hydrogen isotope. For the safety storage of hydrogen isotope, depleted uranium (DU) has been widely proposed. But DU needs a safe test because It is a radioactive substance. The authors studied a small-scale DU bed and a medium-scale DU bed for the safety test. And then we made a large-scale DU bed and stored hydrogen isotopes in the bed. Before the hydriding/dehydriding, we tested it's heating and cooling properties and carried out an activation procedure. As a result, Reaction rate of DU-$H_2$ is more rapid than the other metal hydride ZrCo. Through the successful storage result of our large bed, the development possibility of the hydrogen isotope storage technology seems promising.

Evaluation of $^{14}C$ Behavior Characteristic in Reactor Coolant from Korean PWR NPP's (국내 경수로형 원자로 냉각재 중의 $^{14}C$ 거동 특성 평가)

  • Kang, Duk-Won;Yang, Yang-Hee;Park, Kyong-Rok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This study has been focused on determining the chemical composition of $^{14}C$ - in terms of both organic and inorganic $^{14}C$ contents - in reactor coolant from 3 different PWR's reactor type. The purpose was to evaluate the characteristic of $^{14}C$ that can serve as a basis for reliable estimation of the environmental release at domestic PWR sites. $^{14}C$ is the most important nuclide in the inventory, since it contributes one of the main dose contributors in future release scenarios. The reason for this is its high mobility in the environment, biological availability and long half-life(5730yr). More recent studies - where a more detailed investigation of organic $^{14}C$ species believed to be formed in the coolant under reducing conditions have been made - show that the organic compounds not only are limited to hydrocarbons and CO. Possible organic compounds formed including formaldehyde, formic acid and acetic acid, etc. Under oxidizing conditions shows the oxidized carbon forms, possibly mainly carbon dioxide and bicarbonate forms. Measurements of organic and inorganic $^{14}C$ in various water systems were also performed. The $^{14}C$ inventory in the reactor water was found to be 3.1 GBq/kg in PWR of which less than 10% was in inorganic form. Generally, the $^{14}C$ activity in the water was divided equally between the gas- and water- phase. Even though organic $^{14}C$ compound shows that dominant species during the reactor operation, But during the releasing of $^{14}C$ from the plant stack, chemical forms of $^{14}C$ shows the different composition due to the operation conditions such as temperature, pH, volume control tank venting and shut down chemistry.

  • PDF

Experimental Study on the Temperature Dependency of Full Scale Low Hardness Lead Rubber Bearing (Full-scale 저경도 납면진받침의 온도의존성에 대한 실험적 연구)

  • Park, Jin Young;Jang, Kwang-Seok;Lee, Hong-Pyo;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.533-540
    • /
    • 2012
  • Rubber laminated bearings with lead core are highly affected by changes in temperature because key materials which are rubber and lead have temperature dependencies. In this study, two full scale LRB(D800, S=5) are manufactured and temperature dependency tests on shear properties are accomplished. The shear properties at the 3rd cycle are used at $-10^{\circ}C$, $0^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$ respectively. The double shear configuration, simultaneously testing two pieces, is applied for compression shear test in order to minimize the friction effects due to the test machine, described in ISO 22762-1:2010. Characteristic strength, post-yield stiffness, effective stiffness, equivalent damping ratio are estimated and presented coefficient due to the temperature changes.

Research on Development of Turbo-generator with Partial Admission Nozzle for Supercritical CO2 Power Generation (부분 유입 노즐을 적용한 초임계 이산화탄소 발전용 초고속 터보발전기 개발 연구)

  • Cho, Junhyun;Shin, Hyung-ki;Kang, Young-Seok;Kim, Byunghui;Lee, Gilbong;Baik, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2017
  • A Sub-kWe small-scale experimental test loop was manufactured to investigate characteristics of the supercritical carbon dioxide power cycle. A high-speed turbo-generator was also designed and manufactured. The designed rotational speed of this turbo-generator was 200,000 rpm. Because of the low expansion ratio through the turbine and low mass flowrate, the rotational speed of the turbo-generator was high. Therefore, it was difficult to select the rotating parts and design the turbine wheel, axial force balance and rotor dynamics in the lab-scale experimental test loop. Using only one channel of the nozzle, the partial admission method was adapted to reduce the rotational speed of the rotor. This was the world's first approach to the supercritical carbon dioxide turbo-generator. A cold-run test using nitrogen gas under an atmospheric condition was conducted to observe the effect of the partial admission nozzle on the rotor dynamics. The vibration level of the rotor was obtained using a gap sensor, and the results showed that the effect of the partial admission nozzle on the rotor dynamics was allowable.

Design Enhancement of CANDU S/F Storage Basket (CANDU 사용후핵연료 저장바스켓 설계 개선안 도출)

  • Choi, Woo-Seok;Seo, Ki-Seog;Park, Wan-Gyu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.105-115
    • /
    • 2012
  • Necessity of demonstration test to evaluate the structural integrity of a basket for accident conditions arose during license approval procedure for the WSPP's dry storage facility named MACSTOR/KN-400. A drop test facility for demonstration was constructed in KAERI site and demonstration tests for basket drop were conducted. As the upper welding region of a loaded basket was collided with a dropped basket during the drop test, the welding in this region was fractured and leakage happened after the drop test. The enhancement of basket design was needed since the existing basket design was not able to satisfy the performance requirement. The directions for design modification were determined and six enhanced designs were derived based on these directions. Structural analyses and specimen tests for each enhanced design were conducted. By evaluating structural analysis results and test results, one among six enhanced designs was decided as a final design for revision. The final design was the one to reduce the height of central post of a basket and to decrease the impact velocity with a dropped basket. Test basket models were fabricated with accordance with the final enhanced design. Additional demonstration test was performed for this test model and all the performance requirements were satisfied.