• Title/Summary/Keyword: $p16^{INK4a}$ promoter hypermethylation

Search Result 7, Processing Time 0.018 seconds

Promoter Methylation of CDKN2A, $RAR{\beta}$, and RASSF1A in Non-Small Cell Lung Carcinoma: Quantitative Evaluation Using Pyrosequencing

  • Lee, Jung Uee;Sul, Hae Joung;Son, Ji Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • Background: While qualitative analysis of methylation has been reviewed, the quantitative analysis of methylation has rarely been studied. We evaluated the methylation status of CDKN2A, $RAR{\beta}$, and RASSF1A promoter regions in non-small cell lung carcinomas (NSCLCs) by using pyrosequencing. Then, we evaluated the association between methylation at the promoter regions of these tumor suppressor genes and the clinicopathological parameters of the NSCLCs. Methods: We collected tumor tissues from a total of 53 patients with NSCLCs and analyzed the methylation level of the CDKN2A, $RAR{\beta}$, and RASSF1A promoter regions by using pyrosequencing. In addition, we investigated the correlation between the hypermethylation of CDKN2A and the loss of $p16^{INK4A}$ immunoexpression. Results: Hypermethylation of CDKN2A, $RAR{\beta}$, and RASSF1A promoter regions were 16 (30.2%), 22 (41.5%), and 21 tumors (39.6%), respectively. The incidence of hypermethylation at the CDKN2A promoter in the tumors was higher in undifferentiated large cell carcinomas than in other subtypes (p=0.002). Hyperrmethylation of CDKN2A was significantly associated with $p16^{INK4A}$ immunoexpression loss (p=0.045). With regard to the clinicopathological characteristics of NSCLC, certain histopathological subtypes were found to be strongly associated with the loss of $p16^{INK4A}$ immunoexpression (p=0.016). Squamous cell carcinoma and undifferentiated large cell carcinoma showed $p16^{INK4A}$ immunoexpression loss more frequently. The Kaplan-Meier survival curves analysis showed that methylation level and patient survival were barely related to one another. Conclusion: We quantitatively analyzed the promoter methylation status by using pyrosequencing. We showed a significant correlation between CDKN2A hypermethylation and $p16^{INK4A}$ immunoexpression loss.

p16INK4a Promoter Hypermethylation in Sputum, Blood, and Tissue from Non-Small Cell Lung Cancer and Pulmonary Inflammation (비소세포폐암과 염증성 폐질환에서 가래와 혈액 및 조직에서 p16INK4a Promoter 과메틸화)

  • Kim, Jeong Pyo;Kim, Kyong Mee;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Song, Jeong Sup;Park, Sung Hak;Ahn, Joong Hyun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.2
    • /
    • pp.160-170
    • /
    • 2006
  • Background : The aberrant promoter hypermethylation of p16INK4a, as a tumor suppressor gene, is contributory factor to non-small cell lung cancer(NSCLC). However, its potential diagnostic impact of lung cancer is unclear. This study measured the level of $p16^{INK4a}$ promoter hypermethylation in the sputum and blood, and compared this with the level measured in the tissue obtained from NSCLC and pulmonary inflammation. Methods : Of the patients who visited the Our Lady of Mercy Hospital in Incheon, Korea for an evaluation of a lung mass and underwent blood, sputum, and tissue tests, 23patients (18 NSCLC, 5 pulmonary inflammation) were enrolled in this study. DNA was extracted from each sample and the level of p16INK4amethylation was determined using methylation-specific polymerase chain reaction. Results : $p16^{INK4a}$ methylation of the blood was observed in 88.9% (16 of 18) and 20.0% (1 of 5) of NSCLC and from pulmonary inflammation samples, respectively (P=0.008). Methylation of the sputum was observed in 83.3% (10 of 12) 80.0% (4 of 5) of NSCLC and pulmonary inflammation samples, respectively (P=1.00). Among the 8 NSCLC tissue samples, methylation changes were detected in 75.0% of samples (6 cases). Four out of seven tissue samples (57.1%) showed concordance, being methylated in both the blood and sputum. Conclusions : There was a higher level of $p16^{INK4a}$ methylation of the blood from NSCLC patients than from pulmonary inflammation. The tissue showed a high concordance with the blood in the NSCLC samples. These findings suggest that $p16^{INK4a}$ promoter hypermethylation of the blood can used to discriminate between NSCLC and pulmonary inflammation.

Impact of methylation of the $p16^{INK4a}$ gene on the prognosis ofhead and neck squamous cell carcinoma patients

  • Lee, Eui-Hoon;Hwang, Dae-Seok;Shin, Sang-Hun;Kim, Uk-Kyu;Chung, In-Kyo;Kim, Yong-Deok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.2
    • /
    • pp.101-109
    • /
    • 2012
  • Objectives: The inactivation of the tumor suppressor gene $p16^{INK4a}$ plays an important role in the development of malignant tumors, including oral squamous cell carcinoma. The p16 gene is involved in the p16/cyclin-dependent kinase/retinoblastoma (Rb) gene pathway of cell cycle control. The p16 protein is considered a negative regulator of this pathway. The p16 gene encodes an inhibitor of cyclin-dependent kinases 4 and 6 which regulate the phosphorylation of the retinoblastoma gene and G1 to S phase transition in the cell cycle. However, the p16 gene can lose its functionality through point mutations, loss of heterozygosity or methylation of its promoter region. Materials and Methods: In this study, the authors analyzed the correlation between various clinicopathological findings- patient age, gender and smoking, disease recurrence, tumor size, stage, and differentiation- and p16 protein expression or p16 promoter hypermethylation in 59 cases of head and neck squamous cell carcinoma. Results: The results revealed p16 protein expression and p16 promoter hypermethylation in 28 cases (47.5%) and 21 cases (35.6%), respectively, of head and neck squamous cell carcinoma. However, neither p16 protein expression nor p16 promoter hypermethylation had any statistical influence on clinicopathological findings or survival rate. Conclusion: This data, and a review of the literature, suggest that p16 promoter hypermethylation cannot yet be used as an independent prognostic factor influencing carcinogenesis, but must be considered as an important factor along with other genetic alterations affecting the pRb pathway.

The Relationship DNA Methylation of $p16^{INK4a}$ and Colorectal Cancer

  • Hong, Young-Seoub;You, Chang-Hun;Roh, Mee-Sook;Kim, Na-Young;Lee, Kyung-Eun;Kim, Hyo-Jun;Lee, Hyun-Jae;Kwak, Jong-Young;Kim, Joon-Youn
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.320-325
    • /
    • 2007
  • Promoter hypermethylation of the $p16^{INK4a}$ gene was investigated in 52 sets of samples of tumor tissue and adjacent normal tissue from Korean patients with colorectal cancer, using the proposed modified the Real-time PCR/SYBR Green detection method presented in this study. In normal tissue, 29 of 52 patients (56%) were methylated and in tumor tissue, 23 of 52 patients (44%) were methylated. The 34 cases (65.4%) showed a concordant DNA methylation pattern in both normal tissue and tumor tissue. Analyzing the association between the clinicopathologic features and DNA methylation status of the $p16^{INK4a}$ gene, the DNA methylation status according to by Duke's stage was different while other clinicopathological characteristics, including the age, sex, tumor stage, and histologic type of the patient were not found to be correlated with $p16^{INK4a}$ methylation. With multivariate logistic regression, it was observed that the DNA methylation status of $p16^{INK4a}$ gene in normal tissue was correlated with the DNA methylation status of the $p16^{INK4a}$ gene in tumor tissue (P=0.026). According to a Kaplan-Meier survival analysis, a difference in the survival rate by DNA methylation status was found, but it was not significant.

Methylation of p16 and E-cadherin in ameloblastoma (법랑아세포종에서 p16과 E-cadherin의 메틸화)

  • Park, Can-Woong;Yoon, Hye-Kyoung;Park, Sang-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.6
    • /
    • pp.453-459
    • /
    • 2010
  • Introduction: Ameloblastic carcinoma is a rare malignant lesion, and may arise from either carcinoma ex-ameloblastoma or de novo carcinoma. Aberrant promoter hypermethylation of the tumor-associated genes leading to their inactivation is a common event in many cancer types. The p16/CDKN2/INK4A gene and p16 5 protein are involved directly in regulating the cell cycles. Cadherins are cell adhesion molecules that modulate the epithelial phenotype and regulate tumor invasion. The aim of this study was to evaluate the roles of p16 and E-cadherin methylation and loss of p16 and E-cadherin expression in the malignant transformation of an ameloblastoma. Materials and Methods: Eight cases of ameloblastoma, including 4 benign ameloblastomas without recurrence, 2 benign ameloblastomas with recurrence and 2 carcinoma ex-ameloblastomas, were examined. The promoter hypermethylation profile of the p16 and E-cadherin genes was studied using methylation-specific polymerase chain reaction (MSP) and immunohistochemical staining for p16 and E-cadherin expression. Results: 1) Aberrant CpG island methylation of the p16 gene was detected in 3 of the 4 benign ameloblastomas without recurrence and 1 of the 2 benign ameloblastomas with recurrence. 2) Aberrant CpG island methylation of the E-cadherin gene was found in 1 of the 4 benign ameloblastomas without recurrence. 3) A loss of p16 expression was noted in 1 of 4 benign ameloblastomas without recurrence and 1 of 2 carcinoma ex-ameloblastomas. 4) A loss of E-cadherin expression was noted in 2 of the 4 benign ameloblastomas without recurrence, 1 of the 2 benign ameloblastomas with recurrence and 2 of the 2 carcinoma ex-ameloblastomas. 5) A loss of p16 expression was observed in 1 of the 4 cases showing aberrant methylation of the p16 gene. 6) A loss of E-cadherin expression was observed in 3 benign ameloblastoma case showing aberrant methylation of the E-cadherin gene. Conclusion: These results suggest that loss of E-cadherin expression related to the other genetic pathway (not methylation) might be an adjuvant indicator predicting the malignant transformation of an ameloblastoma. However, the number of samples in this study was too small and the relationship between the treatment methods and clinical course were not defined. Therefore, further study will be needed.

Aberrant Methylation of p16 Tumor Suppressor Gene and Death-Associated Protein Kinase in Non-Small Cell Lung Carcinoma (비소세포폐암 조직에서 p16 종양억제유전자와 Death-Associated Protein Kinase의 Aberrant Methylation의 양상)

  • Kim, Yun-Seong;Lee, Min-Ki;Jung, Kyung-Sik;Kim, Ki-Uk;Kim, Young-Dae;Lee, Hyung-Ryul;Lee, Chang-Hoon;Seok, Ju-Won;Kim, Yong-Ki;Jun, Eun-Sook;Choi, Young-Min;Rha, Seo-Hee;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.2
    • /
    • pp.108-121
    • /
    • 2001
  • Background : The $p16^{INK4a}$ (p16) twnor suppressor gene is frequently inactivated in hwnan non-small cell lung cancers (NSCLCs), predominantly through homozygous deletion or in association with aberrant promotor hypermethylation. Death-associated protein kinase (DAPK) gene influences interferon $\gamma$-induced apoptotic cell death and has important role in metastasis of lung cancer in animal model. Hypermethylation of promoter region of DAP kinase gene may suppress the expression of this gene. Methods : This study was performed to investigate the aberrant methylation of p16 or DAP kinase in 35 resected primary NSCLCs by methylation-specific PCR (MSP), and demonstrated frequency, diagnostic value and clinical implication of aberrant methylation of two genes. Results : Thirty-two cases were male patients, and 3 cases were female patients with an average age was 57. $8{\pm}10.5$ years. The histologic types of lung cancer were 22 of squamous cell carcinoma, 12 of adenocarcinoma, 1 of large cell carcinoma. Pathologic stages were 11 cases of stage I (1 IA, 10 IB), 13 cases of stage II (1 IIA, 12 IIB), and 11 cases of stage III (9 IIIA, 2 IIIB). Regarding for the cancer tissue, p16 aberrant methylation was noted in 13 case of 33 cases (39.4%), DAP kinase in 21 cases of 35 cases (60%). Age over 55 year was associated with p16 aberrant methylation significantly (p<0.05). Methylation status of two genes was not different by smoking history, histologic type, size of tumor, lymph node metastasis and disease progression of lung cancer. There was no correlation between p16 and DAP kinase hypermethylation. Conclusion: This investigation demonstrates that aberrant methylation of p16 tumor suppressor gene or DAP kinase showed relatively high frequency (74.3%) in NSCLCs, and that these genes could be a biologic marker for early detection of lung cancer.

  • PDF

($P16^{ink4}$ Methylation in Squamous Cell Carcinoma of the Oral Cavity. (구강 편평세포암종에서 $P16^{ink4}$ 유전자의 Methylation에 대한 연구)

  • Kang, Gin-Won;Kim, Kyung-Wook;Lyu, Jin-Woo;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • The p16 protein is a cyclin dependent kinase inhibitor that inhibits cell cycle progression from $G_1$ phase to S phase in cell cycle. Many p16 gene mutations have been noted in many cancer-cell lines and in some primary cancers, and alterations of p16 gene function by DNA methylation have been noticed in various kinds of cancer tissues and cell-lines. There have been a large body of literature has accumulated indicating that abnormal patterns of DNA methylation (both hypomethylation and hypermethylation) occur in a wide variety of human neoplasma and that these aberrations of DNA methylation may play an important epigenetic role in the development and progression of neoplasia. DNA methylation is a part of the inheritable epigenetic system that influences expression or silencing of genes necessary for normal differentiation and proliferation. Gene activity may be silenced by methylation of up steream regulatory regions. Reactivation is associated with demethylation. Although evidence or a high incidence of p16 alterations in a variety of cell lines and primary tumors has been reported, that has been contested by other investigators. The precise mechanisms by which abnormal methylation might contribute to carcinogenesis are still not fully elucidated, but conceivably could involve the modulation of oncogene and other important regulatory gene expression, in addition to creating areas of genetic instability, thus predisposing to mutational events causing neoplasia. There have been many variable results of studies of head and neck squamous cell carcinoma(HNSCC). This investigation was studied on 13 primary HNSCC for p16 gene status by protein expression in immunohistochemistry, and DNA genetic/epigenetic analyzed to determine the incidence, the mechanisms, and the potential biological significance of its Inactivation. As methylation detection method of p16 gene, the methylation specific PCR(MSP) is sensitive and specific for methylation of any block of CpG sites in a CpG islands using bisulfite-modified DNA. The genomic DNA is modified by treatment with sodium bisulfate, which converts all unmethylated cytosines to uracil(thymidine). The primers designed for MSP were chosen for regions containing frequent cytosines (to distinguish unmodified from modified DNA), and CpG pairs near the 5' end of the primers (to provide maximal discrimination in the PCR between methylated and unmethylated DNA). The two strands of DNA are no longer complementary after bisulfite treatment, primers can be designed for either modified strand. In this study, 13 paraffin embedded block tissues were used, so the fragment of DNA to be amplified was intentionally small, to allow the assessment of methylation pattern in a limited region and to facilitate the application of this technique to samlples. In this 13 primary HNSCC tissues, there was no methylation of p16 promoter gene (detected by MSP and automatic sequencing). The p16 protein-specific immunohistochemical staining was performed on 13 paraffin embedded primary HNSCC tissue samples. Twelve cases among the 13 showed altered expression of p16 proteins (negative expression). In this study, The author suggested that low expression of p16 protein may play an important role in human HNSCC, and this study suggested that many kinds of genetic mechanisms including DNA methylation may play the role in carcinogenesis.

  • PDF