• Title/Summary/Keyword: $k-\varepsilon$ model

Search Result 750, Processing Time 0.021 seconds

Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model

  • Yang, Yi;Xie, Zhuangning;Gu, Ming
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.465-480
    • /
    • 2017
  • Modelling an equilibrium atmospheric boundary layer (ABL) in computational wind engineering (CWE) and relevant areas requires the boundary conditions, the turbulence model and associated constants to be consistent with each other. Among them, the inflow boundary conditions play an important role and determine whether the equations of the turbulence model are satisfied in the whole domain. In this paper, the idea of modeling an equilibrium ABL through specifying proper inflow boundary conditions is extended to the SST $k-{\omega}$ model, which is regarded as a better RANS model for simulating the blunt body flow than the standard $k-{\varepsilon}$ model. Two new sets of inflow boundary conditions corresponding to different descriptions of the inflow velocity profiles, the logarithmic law and the power law respectively, are then theoretically proposed and numerically verified. A method of determining the undetermined constants and a set of parameter system are then given, which are suitable for the standard wind terrains defined in the wind load code. Finally, the full inflow boundary condition equations considering the scale effect are presented for the purpose of general use.

Chlorination of ortho-position on Polychlorinated Biphenyls Increases Protein Kinase C Activity in Neuronal Cells

  • Lee, Youn-Ju;Yang, Jae-Ho
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.107-112
    • /
    • 2012
  • Polychlorinated biphenyls (PCBs) are persistent and bioaccumulative environmental pollutants. Recently, it is suggested that neurotoxic effects such as motor dysfunction and impairment in memory and learning have been associated with PCB exposure. However, structure relationship of PCB congeners with neurotoxic effects remains unknown. Since PKC signaling pathway is implicated in the modulation of motor behavior as well as learning and memory and the role of PKC are subspecies-specific, we attempted to study the effects of structurally distinct PCBs on the total PKC activity as well as subspecies of PKC in cerebellar granule cell culture model. Cells were exposed to 0, 25 and 50 ${\mu}M$ of PCB-126, PCB-169, PCB-114, PCB-157, PCB-52 and PCB-4 for 15 min. Cells were subsequently analyzed by [$^3H$] phorbol ester binding assay or immunoblotted against PKC-${\alpha}$ and -${\varepsilon}$ monoclonal antibodies. While non-dioxin-like-PCB (PCB-52 and PCB-4) induced a translocation of PKC-${\alpha}$ and -${\varepsilon}$ from cytosol to membrane fraction, dioxin-like PCBs (PCB-126, -169, -114, -157) had no effects. [$^3H$] Phorbol ester binding assay also revealed structure-dependent increase similar to translocation of PKC isozymes. While PCB-4 induced translocation of PKC-${\alpha}$ and -${\varepsilon}$ was inhibited by ROS inhibitor, the pattern of translocation was not affected in presence of AhR inhibitor. It is suggested that PCB-4-induced PKC activity may not be mediated via AhR-dependent pathway. Taken together, our findings suggest that chlorination of ortho-position in PCB may be a critical structural moiety associated with neurotoxic effects, which may be preferentially mediated via non-AhR-dependent pathway. Therefore, the present study may contribute to understanding the neurotoxic mechanism of PCBs as well as providing a basis for establishing a better neurotoxic assessment.

A Numerical Analysis on Two-Dimensional Viscous Flowfield around a Steam Turbine Cascade (2차원 증기터어빈 익렬유동의 수치적 해석)

  • Kim Y. I.;Kim K. S.;Kim K. C.;Ha M. Y.;Park H. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.64-69
    • /
    • 1995
  • A computer code for solving the Reynolds averaged full Navier-Stokes equations has bent developed for analysis of gas and steam turbine cascade flows with the option of using one of two types of turbulence model. One is the Baldwin-Lomax model and the other is standard $k-{\varepsilon}$ model. The numerical integration is based on the explicit four stage Runge-Kutta scheme and finite volume method. To be verified, the resulting code is applied to VKI turbine cascade and compared with the previous experimental results. Finally, the flowfield around a steam turbine cascade is analyzed. Comparisons with experimental data show that present numerical scheme is an accurate Navier-Stokes solver and can give very good predictions for both gas and steam turbine cascade flow.

  • PDF

Three Dimensional Numerical Analysis of the Walking Beam Type of a Hot Roll Reheat Furnace (Walking Beam형 열연 재가열로의 3차원 수치해석)

  • Kim J. K.;Huh G. Y.;Kim I. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.199-204
    • /
    • 1999
  • Three dimensional numerical analysis for the turbulent reactive flow and radiative heat transfer in the walking beam type of a reheat furnace in POSCO has been carried out by the industrial code FLUENT. Computations an based on the conservation equations of mass, momentum, energy and species with the $k-{\varepsilon}$ turbulence model and mixture fraction/PDF(Probability Density Function) approach for the combustion rate. Radiative heat transfer is computed by the discrete ordinates radiation model in combination with the weighted-sum-of-gray-gas model for the absorption coefficient of gas medium. The predicted temperture distribution in the reheat furnace and energy flow fractions are in reasonable agreement with the measurement data.

  • PDF

STUDY ON NUMERICAL ANALYSIS AND TURBULENCE MODELS FOR ARC DISCHARGES IN HIGH-VOLTAGE INTERRUPTERS (초고압 차단부 아크방전 수치해석 및 난류모델에 관한 연구)

  • Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.9-15
    • /
    • 2010
  • In this study, we calculated arc discharges and flow characteristics driven by arcs in a thermal puffer chamber, which is one of most outstanding high-voltage interrupters, for understanding the complex physics and the probability of thermal breakdown. The four main parts of arc model for this virtual-reality are radiation, PTFE ablation, Cu evaporation, and turbulence. Among these important parts the turbulence model can be critical to the reliability of computation results during the whole arcing history because the plasma flow is affected by high heat energy and mass momentum. Two turbulence models, the Prandtl's mixing length model and the standard $k-\varepsilon$ model, are applied for these calculations and are compared with pressure-rise inside chamber and arc voltage between the contacts as well as flow characteristics near current zero.

The Development of Hazardous Waste Compact Dump incinerator for Low Emissions (저공해 compact 유해폐기물 dump 소각기 개발)

  • 전영남;채종성;정오진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.653-663
    • /
    • 2000
  • A lot of hazardous wastes are discharged as by-products of working process by industrial development. Hazardous wastes is physical characteristics of difficult destruction at hight temperature. Numerical simulation and combustion experiment performed of dump incinerator for hazardous waste incineration. For the numerical simulation, the SIMPLEST algorithm was used to ensure rapid converge A K-$\varepsilon$ model was incorporate for the enclosure of turbulence flow. Combustion model was used by ESCRS (extended simple chemically reacting system) model available of CHEMKIN thermodynamic data for the source term of species conservation equation or energy equation. Radiation model is used by six flux model. A parametric screening studies was carried out through numerical simulation and experiment. Residence time and concentration in the incinerator was strongly dependent on the parameters of mixture velocity, mixture equilibrium ratio, surrogate velocity and surrogate equilibrium ratio.

  • PDF

Thermo-fluid Dynamic and Missile-motion Performance Analysis of Gas-Steam Launch System Utilizing Multiphase Flow Model and Dynamic Grid System (다상 유동모델과 동적 격자계를 활용한 가스-스팀 발사체계의 열유동과 탄의 운동성능 해석)

  • Kim, Hyun Muk;Bae, Seong Hun;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.48-59
    • /
    • 2017
  • In this study, an analysis of the thermo-fluid dynamic and missile-motion performance was carried out through a numerical simulation inside the missile canister. Calculation was made in an analytical volume using dynamic grid and evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF (Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.

Die dialektische Aporetik bei Aristoteles und ihre methodologische Funktion (아리스토텔레스에게서 아포리아의 변증적 탐구술과 그 방법론적 기능)

  • Lee, Jae-hyun
    • Journal of Korean Philosophical Society
    • /
    • v.126
    • /
    • pp.263-293
    • /
    • 2013
  • Die vorliegende Abhandlung beachtet die methodologische $N{\ddot{u}}tzlichkeit$ der Dialektik $f{\ddot{u}}r$ die philosophische $Wissenschaftst{\ddot{a}}tigkeit$ des Aristoteles in einer besonderen Aufmerksamkeit auf den Begriff "${\delta}{\iota}{\alpha}{\pi}o{\rho}{\varepsilon}{\iota}{\nu}$". Bei Aristoteles bedeutet "${\delta}{\iota}{\alpha}{\pi}o{\rho}{\varepsilon}{\iota}{\nu}$" 'das durchaus $gr{\ddot{u}}ndliche$ Untersuchen einer Aporie', und eine solche Untersuchungsweise folgt der Dialektik. Deshalb beabsichtige ich zuerst, durch eine Begriffsanalyse und - interpretation von "${\delta}{\iota}{\alpha}{\pi}o{\rho}{\varepsilon}{\iota}{\nu}$" die dialektische Aporetik zu bestimmen als eine Argumentationsmethode nicht nur in einer dialogischen, sondern auch in einer nicht-dialogischen Situation. Besonders will ich einen methodologischen Grund $daf{\ddot{u}}r$ suchen, dass ein allein Forschender in der nicht-dialogischen Situation die dialektische Aporetik verwendet, indem ich einen Text von "De caelo" II 13, 294b 6~13 interpretiere. $N{\ddot{a}}mlich$ betont Aristoteles in Bezug auf den Durchgang der $Wissenschaftst{\ddot{a}}tigkeit$ eine Forderung der selbstkritischen Haltung, die der allein Forschende sich selbst seine Untersuchung in $R{\ddot{u}}cksicht$ auf die anderen Untersuchungen und auch auf die vorhersehbaren Hypothesen ${\ddot{u}}berpr{\ddot{u}}fen$ und verifizieren, um die aus seiner Untersuchung zu entdeckenden Aporien auf die dialektische Weise zu $l{\ddot{o}}sen$. Und diese Position von Aristoteles kann der wichtige Grund $daf{\ddot{u}}r$ sein, den fachsprachlichen Sinn von "${\delta}{\iota}{\alpha}{\pi}o{\rho}{\varepsilon}{\iota}{\nu}$" als auch den wissenschaftlichen Sinn der dialektischen Untersuchung der Aporie richtig verstehen und $erkl{\ddot{a}}ren$ zu $k{\ddot{o}}nnen$. Zuletzt bin ich in der Absicht, die dialektische Aporetik und ihre Funktion in drei Modeln zu formulieren und einige Beispiele $f{\ddot{u}}r$ jedes Model vorzustellen, um zu zeigen, auf welche Art und Weise Aristoteles die dialektische Aporetik $f{\ddot{u}}r$ den Lauf seiner Theoriebildung in der Tat anwendet. Durch solchen Versuch $w{\ddot{u}}nsche$ ich, dass meine Untersuchung ${\ddot{u}}ber$ die dialektische Aporetik etwas besseres $Verst{\ddot{a}}ndnis$ $f{\ddot{u}}r$ die wissenschaftliche Bedeutung der aristotelischen Dialektik anbieten $k{\ddot{o}}nnte$, und auch dass diese Studie als bedeutsame Basisdaten zu einer noch tieferen Forschung und $Verst{\ddot{a}}ndigung$ ${\ddot{u}}ber$ die philosophische Haltung und Methode des Aristoteles betrachtet werden $k{\ddot{o}}nnte$.

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.

A Numerical Simulation of Wave Run-up Around Circular Cylinders in Waves (파랑중 원형 실린더 주위 Wave Run-up 시뮬레이션)

  • Cha, Kyung-Jung;Jung, Jae-Hwan;Seo, Kwang-Cheol;Koo, Bon-Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.750-757
    • /
    • 2016
  • This study presents the wave run-up height around single and multiple surface-piercing cylinders according to wave period and steepness. In order to simulate 3D incompressible viscous two-phase turbulent flow, the present study employed a volume of fluid (VOF) method with realizable $k-{\varepsilon}$ turbulence model based on commercial Computational Fluid Dynamics (CFD) software, "STAR-CCM". The wave periods at model scale were 1.269s and 1.692s for a single cylinder and 1.716s for multiple cylinders. In each case, wave steepness of has 1/30 and 1/16 were used, respectively. Consequently, the results for wave run-up height with regard to wave steepness and period were compared with those of relevant previous experimental studies. The numerical simulation results showed a good qualitative agreement with experiments.