• 제목/요약/키워드: $cos^2{\Theta}$ distribution

검색결과 5건 처리시간 0.018초

선박용 실내조명기구의 배광에 따른 불쾌글레어 분석 (Analysis of Discomfort Glare by luminous intensity distribution of Marine Indoor Luminaires)

  • 조상희;김근율;유영문
    • 조명전기설비학회논문지
    • /
    • 제28권3호
    • /
    • pp.18-25
    • /
    • 2014
  • In this paper, tried to find out the proper luminous intensity distribution for the cabin with low-level height by analyzing the changing tendency of discomfort glare according to luminous intensity distribution of marine indoor luminaires using Unified Glare Rating(UGR). First, we analyzed UGR of the indoor luminaires in the existing cabin, and then evaluated influence on luminous intensity distributions of marine indoor luminaire. The results showed that $cos^2{\Theta}$ distribution got almost low UGR results regardless of height and UGR 16.5 in cabin height of 2m. However, Gaussian distribution with the same beam angle showed that UGR results consistently increased by getting lower height and UGR 20.7 in the same height. In conclusion, the $cos^2{\Theta}$ distribution in consideration of luminous intensity on the direction of observer's eye was appropriate for general cabin indoor luminaires because it decreased UGR in the low-level height.

미세균열의 간격 분포를 이용한 결의 평가(V) (Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (V))

  • 박덕원
    • 암석학회지
    • /
    • 제26권3호
    • /
    • pp.297-309
    • /
    • 2017
  • 거창지역의 쥬라기 화강암에 대하여 결의 특성에 대한 분석을 실시하였다. 박편의 확대사진 및 간격-누적빈도 도표에서 도출한 16개 파라미터의 결합을 통하여 결에 대한 종합적인 평가를 실시하였다. 결에 대한 이들 간격의 파라미터의 대표값에 대한 분석 결과를 요약하면 다음과 같다. 첫째, 상기 파라미터는 그룹 I(간격의 빈도수(N), 총 간격($1mm{\geq}$), 상수(a), 지수(${\lambda}$), 지수 직선의 기울기(${\theta}$), 선의 길이(oa') 및 삼각비($sin{\theta}$, $tan{\theta}$) 그리고 그룹 II(평균 간격(Sm), 평균 간격과 중앙 간격 사이의 차이값(Sm-Sme), 밀도(${\rho}$), 선의 길이(oa 및 aa'), 직각삼각형(${\Delta}oaa^{\prime}$)의 면적 및 삼각비($cos{\theta}$)로 분류할 수 있다. 그룹 I에 속하는 8개 파라미터의 값은 H(3번 결, H1+H2)

일점전개함수에 의한 Heteronuclear Diatomic Molecules의 Force Constants의 계산. Ⅰ. Quadratic Force Constants (Calculation of the Force Constants of Heteronuclear Diatomic Molecules by Use of One Center Function. Ⅰ. Quadratic Force Constants)

  • 김호징;김희준
    • 대한화학회지
    • /
    • 제16권4호
    • /
    • pp.214-218
    • /
    • 1972
  • The quadratic force constants of heteronuclear diatomic molecules, LiH, BeH, BH, CH, NH and OH are evaluated by use of the one center function of Bishop et. al. The master formula on which the computation is based was suggested by the previous work of one of the present authors. The results are in good agreement with the experimental values. It is found that around the nucleus of the atom located in the close vicinity of the expansion center of the one center function, the electronic distribution is relatively unrealistic, and the suggested formula would lead an erroneous result when one takes the origin of variables of $P_2(cos{\theta})/r_3$ at the atomic nucleus.

  • PDF

토목섬유를 이용한 보강토옹벽의 개발 (A Study on the Development of Reinforced Earth wall by Geotextile)

  • 도덕현;유능환
    • 한국농공학회지
    • /
    • 제28권2호
    • /
    • pp.63-73
    • /
    • 1986
  • The model was developed by applying the principles of Bacot and Vidal to measure the behavior of deformation of the reinforced earth wall, and various tasts were performed by using the plastic fabric filter and the galvanized steel plate as a strip. The results obtained are as follows; 1. When the reinforced earth wall is deformed by the load, the strip is completely reinforced by the backfill materials and changed to the rigid block state, under the state of failure which permits sliding only, the next theoretical equation is formed. (H/L) . tan$\theta$ [cosO-sinOtanO] =2sinO[tan($\theta$ +0) +tanO] 2.The degree of the mutual reinforcement of the backfill material and the strip depend on the physical characteristics of the each material especially the angle of shearing resistance of the backfill material is desirable over 20$^{\circ}$ and, if it is over 400, its function could be a maximum. 3.The distribution of the maximum tensile strain of the reinforcement is changing with the height of reinforced earth wall, and when the height from bottom of the reinforced earth wall is 1.85 to 3. 35m, the maximum tensile strain appears at 2m from the skin element. The maximum tensile strain is increased by the depth of the reinforced earth wall from surface, and increased with the lapse of time after construction. 4.The failure surface of the reinforced earth wall by the concrete skin was about 60$^{\circ}$and the failure behavior of the reinforced earth wall in which the fabric filter was buried was slow, and so the pore pressure could be decreased. 5.It is possible to construct the fabric retained earth wall by the plastic fabric filter only. And the reinforcing effect between the steel plate and the plastic fabric filter is not largely different. however, in the aspect of the economic durability, the plastic fabric filter is more advantageous. 6.The reinforcing action mainly depends on the width and the length of the reinforcing materials, if possible, the full width is advantageous to enlarge the contact area with backfill. but considering the economic aspect, it is neccessary to develop the method controlling the space of the strip.

  • PDF

구면조화해석(球面調和解析)에 의(依)한 한반도내(韓半島內)의 지구자기장(地球磁氣場)의 분포(分布)에 관(關)한 연구(硏究) (Geomagnetic Field Distribution in the Korean Peninsula by Spherical Harmonic Analysis)

  • 민경덕;이선희
    • 자원환경지질
    • /
    • 제12권2호
    • /
    • pp.95-104
    • /
    • 1979
  • The position of any point on the earth's surface can be. represented in the spherical coordinates by surface spherical harmonics. Since geomagnetic field is a function of position on the earth, it can be also expressed by spherical harmonic analysis as spherical harmonics of trigonometric series of $a_m({\theta})$ cos $m{\phi}$ and $b_m({\theta})$ sin $m{\phi}$. Coefficients of surface spherical harmonics, $a_m({\theta})$ and $b_m({\theta})$, can be drawn from the components of the geomagnetic field, declination and inclination, and vice versa. In this paper, components of geomagnetic field, declination and inclination in the Korean peninsula are obtained by spherical harmonic analysis using the Gauss coefficients calculated from the world-wide magnetic charts of 1960. These components correspond to the values of normal geomagnetic field having no disturbances of subsurface mass, structure, and so on. The vertical and total components offer the zero level for the interpretation of geomagnetic data obtained by magnetic measurement in the Korean peninsula. Using this zero level, magnetic anomaly map is obtained from the data of airborne magnetic. prospecting carried out during 1958 to 1960. The conclusions of this study are as follows; (1) The intensity of horizontal component of normal geomagnetic field in Korean peninsula ranges from $2{\times}10^4$ gammas to $2.45{\times}10^4$ gammas. It decreases about 500 with the increment of $1^{\circ}$ in latitude. Along the same. latitude, it increases 250 gammas with the increment of $1^{\circ}$ in longitude. (2) Intensity of vertical component ranges from $3.85{\times}10^4$ gammas to $5.15{\times}10^4$ gammas. It increases. about 1000 gammas with the increment of $1^{\circ}$ in latitude. Along the same latitude, it decreases. 150~240 gammas with the increment of $1^{\circ}$ in longitude. Decreasing rate is considerably larger in higher latitude than in lower latitude. (3) Total intensity ranges from $4.55{\times}10^4$ gammas to $5.15{\times}10^4$ gammas. It increases 600~700 gammas with the increament of $1^{\circ}$ in latitude. Along the same latitude, it decreases 10~90 gammas. with the increment of $1^{\circ}$ in longitude. Decreasing rate is considerably larger in higher latitude as the case of vertical component. (4) The declination ranges from $-3.8^{\circ}$ to $-11.5^{\circ}$. It increases $0.6^{\circ}$ with the increment of $1^{\circ}$ in latitude. Along the same latutude, it increases $0.6^{\circ}$ with the increment of l O in longitude. Unlike the cases of vertical and total component, the rate of change is considerably larger in lower latitude than in higher latitude. (5) The inclination ranges from $57.8^{\circ}$ to $66.8^{\circ}$. It increases about $1^{\circ}$ with 'the increment of $1^{\circ}$ in latitude Along the same latitude, it dereases $0.4^{\circ}$ with the increment of $1^{\circ}$ in longitude. (6) The Boundaries of 5 anomaly zones classified on the basis of the trend and shape of anomaly curves correspond to the geologic boundaries. (7) The trend of anomaly curves in each anomaly zone is closely related to the geologic structure developed in the corresponding zone. That is, it relates to the fault in the 3rd zone, the intrusion. of granite in the 1st and 5th zones, and mountains in the 2nd and 4th zones.

  • PDF