• 제목/요약/키워드: $cel$5C

검색결과 38건 처리시간 0.036초

소 반추위 메타게놈에서 새로운 섬유소분해효소 유전자(cel5C) 클로닝 및 유전산물의 특성 (Cloning and Characterization of Cellulase Gene (cel5C) from Cow Rumen Metagenomic Library)

  • 김민근;디렌 바르만;강태호;김정호;김훈;윤한대
    • 생명과학회지
    • /
    • 제22권4호
    • /
    • pp.437-446
    • /
    • 2012
  • 한우의 반추위에서 게놈 DNA를 분리하여 메타게놈 은행을 구축한 다음 섬유소분해효소를 암호화하는 유전자를 클로닝 및 유전자를 선별하였다. 선별된 유전자의 DNA 염기서열 및 아미노산 서열을 분석하고 유전산물의 생화학적인 특성을 조사하였다. $cel$5C 유전자는 1,125 bp로 374개의 아미노산 잔기를 가진 단백질을 암호화하였으며 이 단백질 분자량은 42 kDa이었다. 이 효소의 최적 pH는 4 근방이었으며 최적 온도는 $50^{\circ}C$ 부근이었다. $cel$5C 유전자의 internal primer를 사용하여 인공적으로 배양할 수 있는 49종의 반추세균에서 분리한 게놈 DNA을 주형으로 PCR 분석한 결과 해당하는 밴드를 확인할 수 없었다. Cel5C는 현재로서는 배양할 수 없는 반추 미생물로 추정된다.

Molecular Cloning and Characterization of Two Major Endoglucanases from Penicillium decumbens

  • Wei, Xiao-Min;Qin, Yu-Qi;Qu, Yin-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권2호
    • /
    • pp.265-270
    • /
    • 2010
  • Two major endoglucanase genes (cel7B and cel5A) were cloned from Penicillium decumbens 114-2 using the method of modified thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The result of Southern blotting suggested that P. decumbens has a single copy of the cel5A gene and a single copy of the cel7B gene in its chromosomal DNA. The expression levels of cel5A and cel7B were determined by means of real-time quantitative PCR, suggesting that the two genes were coordinately expressed, and repressed by glucose and induced by cellulose. Both endoglucanase genes were expressed in Saccharomyces cerevisiae and the recombinant proteins were purified. The recombinant Cel7B and Cel5A were both optimally active at $60^{\circ}C$ and pH 4.0. The recombinant Cel7B showed more than 8-fold, 30-fold, and 5-fold higher enzyme activities toward carboxymethyl cellulose, barley $\beta$-glucan, and PASC, respectively, in comparison with that of Cel5A. However, their activities toward pNPC and Avicel showed minor differences. The results suggested that Cel7B is a strict endoglucanase, whereas Cel5A showed processivity because of its relative higher ability to hydrolyze the crystal cellulose.

DNA Shuffling을 이용한 Paenibacillus polymyxa GS01의 다기능 β-Glycosyl Hydrolase (Cel44C-Man26AP558) 효소 활성 증가 (Enhancing the Enzymatic Activity of the Multifunctional β-Glycosyl Hydrolase (Cel44C-Man26AP558) from Paenibacillus polymyxa GS01 Using DNA Shuffling)

  • 강영민;강태호;윤한대;조계만
    • 미생물학회지
    • /
    • 제48권2호
    • /
    • pp.73-78
    • /
    • 2012
  • 본 연구자들은 이전에 cellulase, xyalnase 및 lichenase의 다기능 효소활성을 지니는 절단된 Cel44C-$Man26A_{P558}$${\beta}$-glycosyl hydrolase를 보고하였다. 본 연구에서는 절단된 Cel44C-$Man26A_{P558}$ 효소의 다기능성 ${\beta}$-glycosyl hydrolase 활성을 증가시키기 위해 DNA shuffling을 시도하였다. DNA shuffling에 의해 단일변이(P438A)를 가진 M2Cel44C-$Man26A_{P558}$와 이중변이(A273T 및 P438A)를 가진 M21Cel44C-$Man26A_{P558}$를 얻었다. 이중변이를 가진 M21Cel44C-$Man26A_{P558}$은 단일변이를 가진 M2Cel44C-$Man26A_{P558}$ 보다 효소활성이 낮게 나타났으나, M2Cel44C-$Man26A_{P558}$와 M21Cel44C-$Man26A_{P558}$은 대조구인 Cel44C-$Man26A_{P558}$ 보다 약 1.3에서 2.2배 정도 높은 효소활성을 나타내었다. 특히, 단일변이를 가진 M2Cel44C-$Man26A_{P558}$는 대조구인 Cel44C-$Man26A_{P558}$보다 cellulase, xylanase 및 lichenase 효소활성이 약 1.5에서 2.2배 정도 높게 나타났다. ${\beta}$-Glycosyl hydrolase의 cellulase, linchenase 및 xylanase 최적 효소활성은 각각 pH 7.0, 7.0 및 6.0에서 이었다. 이러한 결과는, 아미노산 잔기인 Ala438이 다기능성 ${\beta}$-glycosyl hydrolase 활성을 증가시키는 중요한 역할을 한다고 추정할 수 있다.

Roles of Carbohydrate-Binding Module (CBM) of an Endo-β-1,4-Glucanase (Cel5L) from Bacillus sp. KD1014 in Thermostability and Small-Substrate Hydrolyzing Activity

  • Lee, Jae Pil;Shin, Eun-Sun;Cho, Min Yeol;Lee, Kyung-Dong;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2036-2045
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel5L, was cloned using the shot-gun method from Bacillus sp.. The gene, which contained a predicted signal peptide, encoded a protein of 496 amino acid residues, and the molecular mass of the mature Cel5L was estimated to be 51.8 kDa. Cel5L contained a catalytic domain of glycoside hydrolase (GH) family 5 and a carbohydrate-binding module family 3 (CBM_3). Chromatography using HiTrap Q and CHT-II resulted in the isolation of two truncated forms corresponding to 50 (Cel5L-p50) and 35 kDa (Cel5L-p35, CBM_3-deleted form). Both enzymes were optimally active at pH 4.5 and $55^{\circ}C$, but had different half-lives of 4.0 and 22.8 min, respectively, at $70^{\circ}C$. The relative activities of Cel5L-p50 and Cel5L-p35 for barley ${\beta}$-glucan were 377.0 and 246.7%, respectively, compared to those for carboxymethyl-cellulose. The affinity and hydrolysis rate of pNPC by Cel5L-p35 were 1.7 and 3.3 times higher, respectively, than those by Cel5L-p50. Additions of each to a commercial enzyme set increased saccharification of pretreated rice straw powder by 17.5 and 21.0%, respectively. These results suggest CBM_3 is significantly contributing to thermostability, and to affinity and substrate specificity for small substrates, and that these two enzymes could be used as additives to enhance enzymatic saccharification.

THIN LAYER CHROMATOGRAPHY 에 의한 CAROTENOID의 분석 (THIN LAYER CHROMATOGRAPHIC SEPARATION OF LEAF XANTHOPHYLLS)

  • 이강호
    • 한국수산과학회지
    • /
    • 제1권2호
    • /
    • pp.73-79
    • /
    • 1968
  • Silica Gel, Hyflo super-Cel, 및 Micro-Cel C 박층을 이용한 xanthophyll 분리를 위한 chromatography의 실험결과를 요약하면 1) 색소분리능력은 Micro-Cel C 박층이 가장 좋고 Silica Gel 박층에서도 만족할만한 하였다. 그러나 Silica Gel 박층은 자체의 산성때문에 조작중 epoxy xanthophyll의 furanoid 이성화를 초래하였다. 2) $CaSO_4$ 등의 binder는 접착보조효과 보다는 오히려 분리능력을 방해하였다. 3) 전개조건은 차광하의 불포화용기내에서 $15\~20$분간의 전개에 $13\%$ acetone-petroleum ether 용매를 쓰는 것이 적당하였다. 4) Band의 형상 및 trailing을 정상화하는데는 양편 가장자리의 박층을 $0.2\~0.3cm$ 폭으로 제거하는 것이 효과적 이였다. 5) 박층의 두께는 10g의 Micro-Cel C 분말을 75ml의 증유수에 현탁시켜 그중 3ml 취하여 한개의 $2\times20cm$ glass slide에 도포한것이 적당하였다. 7) 이상의 결과에서 Micro-Cel C thin-layer는 미량의 시료로서 단시간내에 빠른 조작으로 artifact 생성없이 xanthophyll을 분리 할 수 있고 band는 손쉽게 긁어내어 흡광도법에 의해 정량적인 목적에도 이용할 수 있었다.

  • PDF

Cloning and Characterization of Cellulase Gene (cel5B) from Cow Rumen Metagenome

  • Kang, Tae-Ho;Kim, Min-Keun;Barman, Dhirendra Nath;Kim, Jung-Ho;Kim, Hoon;Yun, Han-Dae
    • 농업생명과학연구
    • /
    • 제46권2호
    • /
    • pp.129-137
    • /
    • 2012
  • A carboxymethyl cellulase gene, cel5B, was cloned, sequenced, and expressed in Escherichia coli. pRCS20 in E. coli was identified from metagenomic cosmid library of cow rumen for cellulase activity on a carboxymethyl cellulose agar plates. Cosmid clone (RCS20) was partially digested with Sau3AI, ligated into BamHI site of pBluescript II SK+ vector, and transformed into E. coli $DH5{\alpha}$. The insert DNA of 1.3 kb was obtained, designated cel5B, which has the activity of hydrolyzation of CMC. The cel5B gene had an open reading frame (ORF) of 1,059 bp encoding 352 amino acids with a signal peptide of 48 amino acids and the conserved region, VIYEIYNEPL, belongs to the glycosyl hydrolase family 5. The molecular mass of Cel5B protein expressed from E. coli $DH5{\alpha}$ exhibited to be about 34 kDa by CMC-SDS-PAGE. The optimal pH was 8.0, and the optimal temperature was about $50^{\circ}C$ for its enzymatic activity.

Molecular Cloning and Characterization of CM Case gene (celC) from Salmonella typhimurium UR

  • Yoo, Ju-Soon;Jung, Youn-Ju;Chung, Soo-Yeol;Lee, Young-Choon;Choi, Yong-Lark
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.205-210
    • /
    • 2004
  • The sequence coding for carboxymethylcellulase (CMCase, CelC) was isolated from the DNA of Salmonella typhimurium URl. Comparison between the deduced amino acid sequence of CelC (368 amino acid residues, Molecular mass 41 kDa) and that of the previously published CMCase revealed that this enzyme belongs to the cellulase family 8 and D. The protein was overproduced in Escherichia coli using T7 expression system, and its activity was confirmed by CMC-SDS-PAGE. When the overexpressed CelC protein was tested on cellulose-type substrates, the recombinant protein is able to degrade cellulose-type substrates, such as CM-cellulose, xylan, avicel, lichenan, and laminarin. Optimal temperature and pH for enzyme activity were found to be 50$^{\circ}C$ and pH 6.5, respectively.

Molecular cloning, purification, expression, and characterization of β-1, 4-endoglucanase gene (Cel5A) from Eubacterium cellulosolvens sp. isolated from Holstein steers' rumen

  • Park, Tansol;Seo, Seongwon;Shin, Teaksoon;Cho, Byung-Wook;Cho, Seongkeun;Kim, Byeongwoo;Lee, Seyoung;Ha, Jong K.;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.607-615
    • /
    • 2018
  • Objective: This study was conducted to isolate the cellulolytic microorganism from the rumen of Holstein steers and characterize endoglucanase gene (Cel5A) from the isolated microorganism. Methods: To isolate anaerobic microbes having endoglucanase, rumen fluid was obtained from Holstein steers fed roughage diet. The isolated anaerobic bacteria had 98% similarity with Eubacterium cellulosolvens (E. cellulosolvens) Ce2 (Accession number: AB163733). The Cel5A from isolated E. cellulolsovens sp. was cloned using the published genome sequence and expressed through the Escherichia coli BL21. Results: The maximum activity of recombinant Cel5A (rCel5A) was observed at $50^{\circ}C$ and pH 4.0. The enzyme was constant at the temperature range of $20^{\circ}C$ to $40^{\circ}C$ but also, at the pH range of 3 to 9. The metal ions including $Ca^{2+}$, $K^+$, $Ni^{2+}$,$Mg^{2+}$, and $Fe^{2+}$ increased the endoglucanase activity but the addition of $Mn^{2+}$, $Cu^{2+}$, and $Zn^{2+}$ decreased. The Km and Vmax value of rCel5A were 14.05 mg/mL and $45.66{\mu}mol/min/mg$. Turnover number, Kcat and catalytic efficiency, Kcat/Km values of rCel5A was $96.69(s^{-1})$ and 6.88 (mL/mg/s), respectively. Conclusion: Our results indicated that rCel5A of E. cellulosolvens isolated from Holstein steers had a broad pH range with high stability under various conditions, which might be one of the beneficial characteristics of this enzyme for possible industrial application.

Characterization of a Multimodular Endo-β-1,4-Glucanase (Cel9K) from Paenibacillus sp. X4 with a Potential Additive for Saccharification

  • Lee, Jae Pil;Kim, Yoon A;Kim, Sung Kyum;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.588-596
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel9K, was cloned using the shot-gun method from Paenibacillus sp. X4, which was isolated from alpine soil. The gene was 2,994 bp in length, encoding a protein of 997 amino acid residues with a predicted signal peptide composed of 32 amino acid residues. Cel9K was a multimodular enzyme, and the molecular mass and theoretical pI of the mature Cel9K were 103.5 kDa and 4.81, respectively. Cel9K contains the GGxxDAGD, PHHR, GAxxGG, YxDDI, and EVxxDYN motifs found in most glycoside hydrolase family 9 (GH9) members. The protein sequence showed the highest similarity (88%) with the cellulase of Bacillus sp. BP23 in comparison with the enzymes with reported properties. The enzyme was purified by chromatography using HiTrap Q, CHT-II, and HiTrap Butyl HP. Using SDS-PAGE/activity staining, the molecular mass of Cel9K was estimated to be 93 kDa, which is a truncated form produced by the proteolytic cleavage of its C-terminus. Cel9K was optimally active at pH 5.5 and $50^{\circ}C$ and showed a half-life of 59.2 min at $50^{\circ}C$. The CMCase activity was increased to more than 150% in the presence of 2 mM $Na^+$, $K^+$, and $Ba^{2+}$, but decreased significantly to less than 50% by $Mn^{2+}$ and $Co^{2+}$. The addition of Cel9K to a commercial enzyme set (Celluclast 1.5L + Novozym 188) increased the saccharification of the pretreated reed and rice straw powders by 30.4% and 15.9%, respectively. The results suggest that Cel9K can be used to enhance the enzymatic conversion of lignocellulosic biomass to reducing sugars as an additive.

우분으로부터 Bacillus subtilis CH-10의 분리 및 균주가 분비하는 Cellulase의 특성에 관한 연구 (Isolation and Characterization of Bacillus subtilis CH-10 Secreting Cellulase from Cattle Manure)

  • 김태일;한정대;전병수;하상우;양창범;김민균
    • 미생물학회지
    • /
    • 제35권4호
    • /
    • pp.277-282
    • /
    • 1999
  • 우분으로부터 cellulase를 생산하는 미생물을 congo red 염색과 활성측정을 통해 선발하여 cellulase 활성이 우수한 균을 분리하였다. 분리균은 생화학적, 형태학적, 균체 지방산 조성을 근거로 Bacillus subtilis CH-10으로 동정하였다. 분리균이 분비하는 효소학적 특성 중 효소생산 조건은 초기 pH7.5 및 배양돈도 50${\circ}C$ 그리고 48시간 배양이 가장 적합하였다. 조효소액에서 CMCase 최적 온도는 75${\circ}C$이었고, 온도안정성은 50${\circ}C$까지 70%의 효소활성을 유지하였다. 조효소액에서 CMCase 최적 pH는 7.5이었고, pH 안정성은 pH7.5~9.0 영역에서 70%의 효소활성을 유지하였다. 분리균을 CMC 배지에서 37${\circ}C$, 24시간 배양시 나타난 CMCase와 Fpase 활성은 각각 1.13 U/㎖와 0.16U/㎖ 였으나 avicelase와 ${\beta}$-glucosidase의 활성은 검출되지 않았다. CMC-SDS-PAGE 방법으로 3개의 효소활성 band를 확인하였고, Cel 1 및 2 그리고 Cel 3의 분자량은 각각 약 39 및 41 그리고 57kDa이었다.

  • PDF