• Title/Summary/Keyword: $anti-{\alpha}-glucosidase$ activity

Search Result 156, Processing Time 0.02 seconds

Antioxidant and Anti-diabetes Activities of Methanolic Extract and Fractions of Astragalus membranaceus Roots

  • Park, Jae-Hyo;Yin, Yu;Wang, Myeong-Hyeon
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.30-35
    • /
    • 2010
  • The potential biological activities of methanol extract and 5 fractions (hexane, $CH_2Cl_2$, EtOAc, BuOH and water) from roots of Astragalus membranaceus were examined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, hydroxyl radical (${\cdot}OH$) scavenging activity, reducing power assays, lipid peroxidation inhibitory activity, $\alpha$-amylase and $\alpha$-glucosidase inhibition assays. The EtOAc fraction showed high DPPH free radical scavenging activity ($EC_{50}=170.34\;{\mu}g/mL$), hydroxyl radical scavenging activity ($EC_{50}=32.14\;{\mu}g/mL$), lipid peroxidation inhibitory activity ($EC_{50}=52.46\;{\mu}g/mL$) and a concentration dependence, with OD value ranging from 0.234 to 0.345 (0.1 to 0.5 mg/mL), for reducing power. The EtOAc fraction has the highest total phenolic content ($142.13\;Gal\;{\mu}g/mg$) and the $CH_2Cl_2$ fraction has the highest flavonoid content ($71.63\;Que\;{\mu}g/mg$). Meanwhile, hexane and EtOAc showed certain $\alpha$-amylase and $\alpha$-glucosidase inhibition activities. These results suggest that the methanol extract and fractions from Astragalus membranaceus root have significant antioxidant and anti-diabetes activities, which could be used as a potential source of pharmaceutical materials.

Improvement of Anti-Inflammation Activity of Gardeniae fructus Extract by the Treatment of β-Glucosidase (β-Glucosidase 처리에 의한 치자추출물의 항염증 활성 증진)

  • Shon, Dong-Hwa;Choi, Dae-Woon;Kim, Mi-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.331-336
    • /
    • 2012
  • In this study, we selected Gardeniae fructus (GF) as an anti-inflammatory functional material and improved the biological activity of GF through the treatment of ${\beta}$-glucosidase. For the simple evaluation of anti-inflammatory activity, the inhibitory activity of GF extract (GFE) on the production of NO by RAW264.7 cells in the presence of LPS was examined. ${\beta}$-glucosidase originating from Aspergillus niger or Aspergillus fumigatus has effectively improved the anti-inflammatory activity of GFE. The enzyme treatment raised the activity of GFE by more than 10 times. The optimum conditions for the enzyme reaction were at pH 4.6, $45^{\circ}C$, and 20 U/mL for 24 h with agitation. In addition, in vitro production of cytokines (IL-$1{\beta}$, IL-6, TNF-${\alpha}$), COX-2, and the NF-${\kappa}B$ activation of RAW264.7 cells decreased more in the presence of GFE treated with ${\beta}$-glucosidase originating from Aspergillus niger (GFAN) than in the presence of GFE. These results suggest that enzyme-treated GFE might be a potential candidate for natural anti-inflammatory food materials.

Anti-Diabetic Effects of an Ethanol Extract of Cassia Abbreviata Stem Bark on Diabetic Rats and Possible Mechanism of Its Action - Anti-diabetic Properties of Cassia abbreviata -

  • Bati, Keagile;Kwape, Tebogo Elvis;Chaturvedi, Padmaja
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • Objectives: This study aimed to evaluate the hypoglycemic effects of an ethanol extract of Cassia abbreviata (ECA) bark and the possible mechanisms of its action in diabetic albino rats. Methods: ECA was prepared by soaking the powdered plant material in 70% ethanol. It was filtered and made solvent-free by evaporation on a rotary evaporator. Type 2 diabetes was induced in albino rats by injecting 35 mg/kg body weight (bw) of streptozotocin after having fed the rats a high-fat diet for 2 weeks. Diabetic rats were divided into ECA-150, ECA-300 and Metformin (MET)-180 groups, where the numbers are the doses in mg.kg.bw administered to the groups. Normal (NC) and diabetic (DC) controls were given distilled water. The animals had their fasting blood glucose levels and body weights determined every 7 days for 21 days. Oral glucose tolerance tests (OGTTs) were carried out in all animals at the beginning and the end of the experiment. Liver and kidney samples were harvested for glucose 6 phosphatase (G6Pase) and hexokinase activity analyses. Small intestines and diaphragms from normal rats were used for ${\alpha}-glucosidase$ and glucose uptake studies against the extract. Results: Two doses, 150 and 300 mg/kg bw, significantly reduced the fasting blood glucose levels in diabetic rats and helped them maintain normal body weights. The glucose level in DC rats significantly increased while their body weights decreased. The 150 mg/kg bw dose significantly increased hexokinase and decreased G6Pase activities in the liver and the kidneys. ECA inhibited ${\alpha}-glucosidase$ activity and promoted glucose uptake in the rats' hemi-diaphragms. Conclusion: This study revealed that ECA normalized blood glucose levels and body weights in type 2 diabetic rats. The normalization of the glucose levels may possibly be due to inhibition of ${\alpha}-glucosidase$, decreased G6Pase activity, increased hexokinase activity and improved glucose uptake by muscle tissues.

Antidiabetic Activity and Enzymatic Activity of Commercial Doenjang Certified for Traditional Foods (전통식품 품질인증 일부 시판 된장의 효소활성 및 항당뇨 활성)

  • Lee, So-Young;Kim, In-Sun;Park, So-Lim;Lim, Seong-Il;Choi, Hye-Sun;Choi, Shin-Yang
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.361-366
    • /
    • 2012
  • We investigated the anti-diabetic activity and enzymatic activity of 24 commercial doenjang samples certified for traditional foods. Twenty four doenjang samples showed the wide ranges in enzymatic activities (protease activities 0-50.45 unit/g, ${\alpha}$-amylase activities 0-675.9 unit/g, ${\beta}$-amylase 13.6-308.6 unit/g), and there were no difference in enzymatic activity by the producing region. To evaluate the potential anti-diabetic activity of 24 doenjang samples, we examined the effect of doenjang methanol extract (DME) on 2-[n-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amyno]-2-deoxy-d-glucose (2-NBDG) uptake. Ten samples among 24 samples significantly stimulated the uptake of 2-NBDG. When the cells were treated with DME at 400 ug/mL, No. 17 and 23 specially stimulated 2-NBDG uptake by 1.23-fold and 1.25-fold, respectively, compared with untreated control cell. And there were no cytotoxicity in the C2C12 cells treated with DME at concentration of 500 ug/mL. Among 24 samples, No. 6, 7, 12, 21 and 24 showed the ${\alpha}$-glucosidase inhibitor activity at concentration of 10 mg/mL; however, they were less effective than acarbose which is a commercial ${\alpha}$-glucosidase inhibitor.

Verification of Biological Activities and Tyrosinase Inhibition of Ethanol Extracts from Hemp Seed (Cannabis sativa L.) Fermented with Lactic Acid Bacteria (대마씨 발효 추출물의 생리 활성 및 미백 활성 검증)

  • Yoon, Yeo-Cho;Kim, Byung-Hyuk;Kim, Jung-Kyu;Lee, Jun-Hyeong;Park, Ye-Eun;Kwon, Gi-Seok;Hwang, Hak Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.688-696
    • /
    • 2018
  • Hemp seed (Cannabis sativa L.; HS), an annual herbaceous plant in the Cannabis genus, has been reported to play various biological functions in immunity increase, atherosclerosis, constipation, hyperlipidemia prevention, anti-inflammatory, and anti-cancer. In recently years, as superfood, the growing interest in the health care benefits of hemp seed has led to increased consumption. In this study, we investigated the effect of an ethanol extract of HS fermented with lactic acid bacteria (Lactobacillus plantarum KCTC 3107, L. plantarum KCTC 3108, L. brevis BHN-LAB128, L. paracasei BHN-LAB129). An antibacterial activity against Staphylococcus aureus and Bacillus cereus were 13.99 mm and 15.17 mm, respectively. The ethanol extracts of fermented hemp seed by lactic acid bacteria that the contents of total polyphenol, total flavonoid content, DPPH radical scavenging activity, SOD-like activity, and ${\alpha}$-glucosidase inhibitory activity were increased compared to non-fermented hemp seed. Also, tyrosinase inhibitory activity of the fermented hemp seed (FHS), known to melanin increasing substance was increased. In these results, we suggested that FHS have effects of anti-oxidant, ${\alpha}$-glucosidase inhibitory activity, and tyrosinase inhibitory activity. Hence, we proposed that FHS has possible to development as functional foods and cosmetics.

Bio-assay Guided Isolation and Identification of α-Glucosidase Inhibitors from the Leaves of Diospyros lotus (고욤나무 잎으로부터 활성유도 분획법에 의한 α-Glucosidase 저해물질 분리 및 확인)

  • Kim, Sang Jun;Kim, Ji-Ae;Kim, Da Hye;Kwak, Seol Hwa;Yu, Kang-Yeol;Jang, Seon Il;Kim, Seon-Yeong;Jeong, Seung-Il
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.2
    • /
    • pp.105-108
    • /
    • 2015
  • To establish the anti-diabetic(α-glucosidase inhibitory) activity of D. lotus leaf extract, isolate and identify the constituents responsible for the activity. The methanolic extract of leaves was partitioned between water, n-butanol and ethyl acetate. Bio-assay guided fractionation, based on inhibition of ;${\alpha}$-glucosidase, allowed isolation and identification of the active components. Liquid chromatography/mass spectrometry(LC/MS), 1 H-NMR and 13 C-NMR spectra analyses demonstrated that the active compound was myricetin-3-O-;${\alpha}$-L-rhamnoside(1). Compound 1 demonstrated a strong inhibition on the α-glucosidase, in vitro and ;${\alpha}$-glucosidase inhibitory value was calculated as 98.08%, when that of a reference drug, acarbose was estimated as 83.03%. The present study indicates compound 1 could be considered as an ;${\alpha}$-glucosidase inhibitor and developed as an important antidiabetes agent for type II diabetes therapy.

Studies for Component Analysis, Antioxidative Activity and ${\alpha}-glucosidase$ Inhibitory Activity from Equisetum arvense (쇠뜨기(Equisetum arvense) 추출물의 항산화 활성 분석 및 ${\alpha}-glucosidase$ 저해활성)

  • Gua, Jia;Jin, Ying-Shan;Han, Woong;Shim, Tae-Heum;Sa, Jae-Hoon;Wang, Myeong-Hyeon
    • Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.77-81
    • /
    • 2006
  • This study was carried out to investigate the chemical components, and antioxidative and $anti-{\alpha}-glucosidase$ activities of Equisetum arvense extracts. In Equisetum arvense extracts were composed of 53.20% of crude fiber, 20.42% of crude ash, 15.32% of crude protein and 2.21% of crude fat. Potassium was the most predominant mineral and followed by phosphorus, calcium, magnesium, and sodium. The contents of the unsaturated fatty acids, such as linolenic acid, linoleic acid, and palmitic acid, were higher than those of saturated fatty acids. Seventy percent ethanol extract exhibited antioxidative activity with $IC_{50}$ of $168.1\;{\mu}g/ml$. The Seventy percent methanol extract showed higher ${\alpha}-glucosidase$ inhibitory activity than other solvent extracts.

Alpha-glucosidase Inhibitory Activities of Some Wild Vegetable Extracts

  • Kim, Jong-Sang;Kwon, Chong-Suk;Son, Kun-Ho;Kim, Jung-In
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.174-176
    • /
    • 2000
  • Seventeen wild vegetables consumed commonly in Korea were tested for inhibitory activities against alpha-glucosidase, followed by Bupleurum longeradiatum and Angelica decursiva. The hexane-soluble fractions of Hosta longipes, Ainsliaea acerifolia, Pedicularis resupinata, Bupleurum longeradiatum, and Angelica decursiva all at the concentration of 5 mg/ml, inhibited enzyme activity by greater than 50%, and the ethylacetate-soluble fractions of Hosta longipes, and Codonopsis lanceolata, and Bupleurum longeradiatum had relatively strong inhibitory activity against the enzyme. These results suggest that some edible plants merit further evaluation for clinical usefulness as anti-diabetic drugs.

  • PDF

Free radical scavenging and α-glucosidase inhibitory effects of a roots extract of Aruncus dioicus var. kamtschaticus (재배 삼나물 뿌리 추출물의 자유 라디칼소거 및 α-glucosidase 저해활성)

  • Jeong, Gyeong Han;Kim, Tae Hoon
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.989-994
    • /
    • 2016
  • As part of our continuing search for bioactive natural products, the antioxidant and ${\alpha}$-glucosidase inhibitory activities of an 80% methanolic extract and organic solvent soluble-portions of Aruncus dioicus var. kamtschaticus roots were investigated by using a bioassay system. The antioxidant activity of A. dioicus var. kamtschaticus roots extract and organic solvent soluble-portions were assessed by examining with 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radical scavenging. In addition, anti-diabetic effects of the A. dioicus var. kamtschaticus root extract and organic solvent soluble-portions were tested via ${\alpha}$-glucosidase inhibition assay. The total phenolic contents of the products were determined by applying UV-VIS spectrophotometry. All tested samples showed dose-dependent radical scavenging and ${\alpha}$-glucosidase inhibitory properties. In particular, the ${\alpha}$-glucosidase inhibitory and radical scavenging effects of the ethyl-acetate (EtOAc)-soluble portion from the roots of A. dioicus var. kamtschaticus were greater than those from other solvent-soluble portions. These results indicate that A. dioicus var. kamtschaticus could be considered a new effective source of natural antioxidants and anti-diabetic materials. More systematic research of the constituents of the roots of this A. dioicus variety will be conducted to further develop its antioxidative and anti-diabetic properties.

Intestinal Bacterial Metabolism of Flavonoids and Its Relation to Some Biological Activities

  • Kim, Dong-Hyun;Jung, Eun-Ah;Sohng, In-Suk;Han, Jung-Ah;Kim, Tae-Hyung;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • Flavonoid glycosides were metabolized to phenolic acids via aglycones by human intestinal microflora producing ${\alpha}$-rhamnosidase, exo-${\beta}$-glucosidase, endo- ${\beta}$-glucosidase and/or ${\beta}$-glucuronidase. Rutin, hesperidin, naringin and poncirin were transformed to their aglycones by the bacteria producing ${\alpha}$-rhamnosidase and ${\beta}$-glucosidase or endo- ${\beta}$-glucosidase, and baicatin, puerarin and daidzin were transformed to their aglycones by the bacteria producing ${\beta}$glucuronidase, C-glycosidase and ${\beta}$-glycosidase, respectively. Anti-platelet activity and cytotoxicity of the metabolites of flavonoid glycosides by human intestinal bacteria were more effective than those of the parental compounds. 3,4-Dihydroxyphenylacetic acid and 4-hydroxyl-phenylacetic acid were more effective than rutin and quercetin on anti-platelet aggregation activity. 2,4,6-Trihydroxybenzaidehyde, quercetin and ponciretin were more effective than rutin and ponciretin on the cytotoxicity for tumor cell lines. We insist that these flavonoid glycosides should be natural prodrugs.

  • PDF