• 제목/요약/키워드: $ZrSiO_4$ powder

검색결과 29건 처리시간 0.021초

고 에너지 밀링 공정으로 제조된 지르콘 나노분말의 소결특성에 관한 연구 (Sintering Characteristics of Zircon Nanopowders Fabricated by High Energy Milling Process)

  • 이주성;강종봉
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.95-99
    • /
    • 2016
  • In this study, 5 um sized $ZrSiO_4$ was ground to 1.9 um, 0.3 um, and 0.1 um sized powders by wet high energy milling process, and the sintering characteristics were observed. Pure $ZrSiO_4$ itself can-not be sintered to these levels of theoretical density, but it was possible to sinter $ZrSiO_4$ powder of nano-scale size of, -0.1 um to the theoretical density and to lower the sintering temperature for full density. Also, the decomposition of $ZrSiO_4$ with a size in the micron range resulted in the formation of monoclinic $ZrO_2$; however, in the nano sized range, the decomposition resulted in the tetragonal phase of $ZrO_2$. So, it was possible to improve the sintering characteristics of nano-sized $ZrSiO_4$ powders.

Al첨가에 의한 무수축 Mullite-$ZrO_2$ 요업체의 제조에 관한 연구 (A Study on the Fabrication of Shrinkage-Free Mullite--$ZrO_2$ Ceramics with Al-Additives)

  • 김정욱;김일수
    • 한국재료학회지
    • /
    • 제5권7호
    • /
    • pp.888-896
    • /
    • 1995
  • Al 금속분말을 zircon sand (ZrSiO$_4$)와 A1$_2$O$_3$혼합체에 첨가하여 반응소결시킴으로써 무수축 Mullite-ZrO$_2$, 요업체를 얻고자 하였다. 반응식, 3(Al+Al$_2$O$_3$)+2ZrSiO$_4$$\longrightarrow$3A1$_2$O$_3$ .2SiO$_2$+2ZrO$_2$에 의하여 ZrO$_2$-강화 Mullite 요업체를 제조하였다. Al 분말은 A1$_2$O$_3$에 대해 0-30 무게 퍼센트까지 대체하였다. 평량한 분말을 볼밀하여 혼합 분쇄한 후, 정수압 성형하여 시편을 제조하고, 온도범위 1450-1$600^{\circ}C$에서 3시간 반응소결시켰다. Al의 충분한 산화를 위해, 한편으로는 125$0^{\circ}C$에서 5시간동안 열처리를 거친후 소성온도로 올리기도 했다. Al을 첨가함으로서 반응은 촉진되었으며, 소성수축도 산화한 Al의 부피팽창에 의해 상쇄되어, 무수축요업체 제조의 가능성을 보였다. 박편모양을 한 비교적 큰 Al분말이 잘 분쇄되지 않음으로 해서, Al이 자리했던 곳에 큰 기공을 남겼다.

  • PDF

Nb/MoSi2 접합재료의 계면 수정 및 특성 (Interfacial Moderation and Characterization of Nb/MoSi2 Bonding Materials)

  • 이상필;윤한기
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1132-1137
    • /
    • 2003
  • This study dealt with the suppression of interfacial reaction between Nb and MoSi$_2$ for the fabrication of high toughness Nb/MoSi$_2$ laminate composites, based on the results of a thermodynamical estimation. Especially, the effect of ZrO$_2$ particle on the interfacial reaction of Nb/MoSi$_2$ bonding materials has been examined. Nb/MoSi$_2$ bonding materials have been successfully fabricated by alternatively stacking matrix mixtures and Nb sheets and hot pressing in the graphite mould. The addition of ZrO$_2$ particle to MoSi$_2$ matrix is obviously effective for promoting both the interfacial reaction suppression and the sintered density of Nb/MoSi$_2$ bonding materials, since it is caused by the formation of ZrSiO$_4$ in the MoSi$_2$-ZrO$_2$ matrix mixture. The interfacial shear strength of Nb/MoSi$_2$ bonding materials also decreases with the reduction of interfacial reaction layer associated with the content of ZrO$_2$ particle and the fabrication temperature.

무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향 (Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites)

  • 신용덕;권주성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

무가압소결한 $\beta$-SiC-$ZrB_2$계 도전성 복합체의 제조 및 기계적, 전기적 특성 (Mechanical, Electrical Properties and Manufacture of the $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites by Pressureless Sintering)

  • 신용덕;권주성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권2호
    • /
    • pp.98-103
    • /
    • 1999
  • The effect of $Al_2O_3$ additives to $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composites by pressureless sintering on microstructural, mechanical and electrical properties were investigated. The $\beta-SiC+39vol.%ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_2O_3$ powder as a liquid forming additives at $1950^{\cire}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha-SiC(6H), ZrB_2$ and weakly $\alpha-SiC(4H), \beta-SiC (15R)$ phase. The relative density of composites was lowered by gaseous products of the result of reaction between \beta-SiC and Al_2O_3$, therefore, porosity was increased with increasing $Al_2O_3$ contents, and showed the maximum value of 1.4197MPa.$m^{1/2}$ for composite with 4wt.% $Al_2O_3$ additives. The electrical resistivity of $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composite was increased with increasing $Al_2O_3$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\cire}C$ to $700^{\cire}C$.

  • PDF

RBAO 세라믹스 공정에서 어트리터 효율에 미치는 볼 크기의 영향 (The Effects of Ball Size on Attritor Efficiency in the Processing of RBAO Ceramics)

  • 김일수;강민수;박정현
    • 한국세라믹학회지
    • /
    • 제35권4호
    • /
    • pp.406-412
    • /
    • 1998
  • The reaction bonded alumina ceramics was prepared through the addition of each SiC and ZrO2 powder to the mixture of Al metal powder and Al2O3 The mono sized (3mm) and biodal sized (3mm+5mm) balls were used in attrition milling of Al and starting powders. The milling efficiency of both cases was compared by the analysis of particle size and X-ray diffraction. After the forming and sintering of each powder batchs the weight gains dimensional changes and densities were determined. The specimens were investigated by X-ray diffraction analysis and scanning electron microscope. Bimodal sized balls had better milling effect than single ball size in the milling of Al powder. However in the milling which ceramic powders mono sized the green body during the reaction sintering at 1$600^{\circ}C$ for 5 hour was about 10% The densities attained the values of 92-98% theoretical. The SiC added specimen that was milled with 3mm ball media had 96% theoretical density and dense microstructure.

  • PDF

$Al_2O_3+Y_2O_3$를 첨가한 $\beta$-SiC+39vol.%$ZrB_2$ 복합체의 특성 (Properties of the $\beta$-SiC+39vol.%$ZrB_2$ Composites with $Al_2O_3+Y_2O_3$ additives)

  • 신용덕;주진영;진홍범;박기엽;여동훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1913-1915
    • /
    • 1999
  • The ${\beta}-SiC+ZrB_2$ ceramic composites were hot-press sintered and annealed by adding 1, 2, 3wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a liquid forming additives at $1950^{\circ}C$ for 4h. In this microstructures, no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 90.79% of the theoretical density and the porosity decreased with increasing $Al_2O_3+Y_2O_3$ contents. Phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H, 4H), $ZrB_2$, $Al_2O_3$ and $\beta$-SiC(15R). Flexural strength showed the highest of 315.46MPa for composites added with 3wt% $Al_2O_3+Y_2O_3$ additives at room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed the highest of $5.5328MPa{\cdot}m^{1/2}$ for composites added with 2wt% $Al_2O_3+Y_2O_3$ additives at room temperature.

  • PDF

다공성 $ZrTiO_4$ 재료의 제조 및 특성 (Fabrication and characteristics of porous ceramics from $ZrTiO_4$ based ceramic material)

  • 허근;명성재;이용현;전명표;조정호;김병익;심광보
    • 한국결정성장학회지
    • /
    • 제18권1호
    • /
    • pp.5-9
    • /
    • 2008
  • 코디어라이트는 낮은 열팽창계수를 가지나, 디젤 배기가스 담체로써 사용하기에는 기계적 강도가 낮고, 황에 대한 내산성이 취약한 문제를 가지고 있다. 본 연구에서는 $SiO_2,\;Al_2O_3$, MoOx, $Cr_2O_3$$Nb_2O_5$가 첨가된 $ZrTiO_4$의 물성을 XRD, SEM, UTM 및 열팽창계수 측정 장치를 사용하여 측정하고 분석하였다. $ZrTiO_4$$TiO_2$$ZrO_2$를 출발원료로 볼빌에서 혼합한 후 $1240^{\circ}C$ 이상의 온도에서 3시간 하소함으로써 monoclinic 구조로 합성되었다. 꺽임강도 및 열팽창계수 측정용 시편은 $ZrTiO_4$와 첨가제를 혼합 성형하고, $1300^{\circ}C$에서 3 시간 소성함으로써 얻어졌다. 소결된 시편의 기공율은 첨가제의 함량이 5%로 증가함에 따라 첨가제의 종류에 관계없이 감소하였으나, 첨가제의 함량이 10% 로 증가하면 기공율은 포화되었다. 꺾임강도는 $Al_2O_3$를 5, 10 wt% 첨가 시 큰 폭으로 증가하였으나, 나머지 첨가제에 대해서는 꺾임강도가 감소하였다. $ZrTiO_4$의 열팽창계수 $(1000^{\circ}C)$$Nb_2O_5$를 제외하고는 첨가제가 증가할수록 계속적으로 감소하였으며, 특히, $SiO_2$가 첨가된 경우 가장 낮은 열팽창계수를 나타내었다.

Silica, Alumnia, Clay를 첨가한 지르콘의 소결특성에 미치는 영향 (Effect of SiO2, Al2O3, and Clay Additions on the Sintering Characteristics of Zircon)

  • 이근봉;정승화;이주성;홍경표;조범래;문종수;강종봉
    • 한국재료학회지
    • /
    • 제18권7호
    • /
    • pp.352-356
    • /
    • 2008
  • Effect The effect of sintering additives ($SiO_2$, $Al_2O_3$, Clay) on the mechanical characteristics of sintered zircon was investigated. 1 vol% of additives in zircon powder was was sintered at $120{\sim}1500^{\circ}C$, the mechanical characteristics were measured, and microstructure analysis were was conducted. $Al_2O_3$ and clay additions increase the formation of monoclinic and tetragonal-$ZrO_2$ formation. An addition of SiO2 addition suppressed the formation of tetragonal-$ZrO_2$ formation., The A specimen sintered at $1400^{\circ}C$ showed the a density of $4.05\;g/cm^3$ and the a microhardness of 1120 HV, respectively.

$\beta-SiC-ZrB_2$ 복합체의 파괴인성 증진연구 (A Study on Improvement of Fracture Toughness of $\beta-SiC-ZrB_2$Composites)

  • 신용덕;주진영;윤세원;황철;송준태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.291-294
    • /
    • 1999
  • The effect of AI$_2$O$_3$+Y$_2$O$_3$additives on fracture toughness of $\beta$-SiC-ZrB$_2$composites by hot-pressed sintering were Investigated. The $\beta$-SiC-ZrB$_2$ ceramic composites were hot-presse sintered and annealed by adding 1, 2, 3wt% AI$_2$O$_3$+Y$_2$O$_3$(6:4wt%) powder as a liquid forming additives at 195$0^{\circ}C$ for 4h. In this microstructures, no reactions were observed between $\beta$-SiC and ZrB$_2$, and the relative density Is over 90.79% of the theoretical density and the porosity decreased with increasing AI$_2$O$_3$+Y$_2$O$_3$ contents. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed the highest of 5.5328MPa . m$^{1}$2/ for composites added with 2wt% AI$_2$O$_3$+Y$_2$O$_3$ additives at room temperature. But the standard deviation of fracture toughness of specimens decreased with increasing AI$_2$O$_3$+Y$_2$O$_3$ contents and showed the highest of 0.8624 for composite tilth 1wt%, AI$_2$O$_3$+Y$_2$O$_3$additives.

  • PDF