• Title/Summary/Keyword: $ZrO_2-8%Y_2O_3$

Search Result 449, Processing Time 0.026 seconds

Microstructures and Mechanical Properties of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 미세구조 및 기계적 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.991-1003
    • /
    • 1990
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent, various types of metal hydroxides were obtained by single precipitation(series A) and co-precipitation(series B) method at the pH condition between 7 and 11. Fine Al2O3-ZrO2 powders were prepared at optimum calcination condition and the effects of ZrO2 on microstructures and mechanical properties of Al2O3 were investigated. The composition of Al2O3/ZrO2 composites wax fixed as Al2O3-15 v/o ZrO2(+3m/o Y2O3). ZrO2 limited the grain growth of Al2O3 and increased grain size homogeneity of Al2O3 more effectively than MgO.Flexural strength values in Al2O3 and Al2O3/ZrO2 composites were 340-430 MPa and 540-820 MPa, respectively, and the effect of strength improvement showed 20-50% by adding ZrO2 to Al2O3. Fracture toughness of Al2O3/ZrO2 composites was improved by stress-induced phase transformation of tetragonal ZrO2 and toughening effect by microcrack was not observed. Also, ZrO2 particles located at Al2O3 grain junction contributed to toughening, while spherical ZrO2 particles located within Al2O3 grain did not contribute to toughening. Weibull moduli of Al2O3 ceramics and Al2O3/ZrO2 composites of series A and series B were 4.34, 5.17 and 9.06, respectively. Above 0.5 of failure probability, strength values in Al2O3 ceramics and Al2O3/ZrO3 composites of series A and series B were above 400 MPa, 700 MPa and 650 MPa, respectively.

  • PDF

Properties of the System $ZrO_2$+3m/o $Y_2O_3$ Powder Prepared by Co-precipitation Method(I) : Stability of Tetragonal ZrO2 Powder (공침법으로 제조한 $ZrO_2$+3m/o $Y_2O_3$계 분체의 특성(I) : 정방정 Zirconia분체의 안정성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.361-368
    • /
    • 1990
  • The properties of the powder of ZrO2+3m/o Y2O3 system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide near by Zr(OH)4 structure showed more excellent crystallinity and lower formation temperature of tetragonal ZrO2. In the range of this study, cubic ZrO2 was not formed and stability of tetragonal ZrO2 prepared in the conditiion of pH 7 was most excellent. Average particle sizes and specific surface areas of tetragonal ZrO2 powders, prepared as calcining amorphous zirconium hydroxides at $600^{\circ}C$ for 1h, were 0.6-0.8${\mu}{\textrm}{m}$ and 45-70$m^2$/g, respectively.

  • PDF

Effect of Alumina Particle Size on R-curve Behavior of (Y,Nb)-TZP/${Al_2}{O_3}$ Composites (알루미나 입도가 (Y,Nb)-TZP/${Al_2}{O_3}$ 복합체의 R-curve 거동에 미치는 영향)

  • Lee, Deuk-Yong;Kim, Dae-Joon;Kim, Bae-Yeon;Song, Yo-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.936-941
    • /
    • 2001
  • The influence of the ${Al_2}{O_3}$ particle size on flaw tolerance of the $ZrO_2/{Al_2}{O_3}$ composites prepared by mixing 5.31 mol% ${Y_2}{O_3}$-4.45 mol% ${Nb_2}{O_5}$-90.31 mol% $ZrO_2$ and ${Al_2}{O_3}$ was investigated. The composites exhibited rising R-curve behavior and plateau fracture toughness of 7.9 and $8.8MPam^{1/2}$ for the additions of 20 vol% of 0.2 and $2.8{\mu}m$ ${Al_2}{O_3}$ particles, respectively. The difference in the fracture toughness resistance was attributed mainly to the grain size of tetragonal $ZrO_2$ phase in the composites, which scaled with the ${Al_2}{O_3}$ particle size.

  • PDF

Characterization of Oxide Scales Formed on Ni3Al-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B (Ni3Al-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B 합금의 고온산화막분석)

  • Kim, Gi-Yeong;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.220-224
    • /
    • 2002
  • The oxide scales formed on $Ni_3Al$-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B after oxidation at 900, 1000 and 110$0^{\circ}C$ in air were studied using XRD, SEM, EPMA and TEM. The oxide scales consisted primarily of $NiO,\; NiAl_2O_4,\;{\alpha}-Al_2O_3,\; monoclinic-ZrO_2,\; and \;tetragonal-ZrO_2$. The outer layer of the oxide scale was rich in Ni-oxides, whereas the internal oxide stringers were rich in Al-oxides and $ZrO_2$. Within the above oxide scales, Cr and Mo tended to exist as dissolved ions.

Fabrication and Characteristic of ZrO2-8%Y2O3 Powder for Plasma Spray Coating Manufactured by Mechanical Mixing Method (기계적 혼합에 의한 플라즈마 용사용 ZrO2-Y2O3 분말의 제조 및 특성)

  • Han, Jin-Won;Kwak, Chan-Won;Woo, Kee-Do
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.357-362
    • /
    • 2014
  • Thermal barrier coatings(TBCs) are being applied in many industrial fields such as thermal power generation, aviation and seasonal fields. $ZrO_2-Y_2O_3$(8%) thermal spray coating powders are commercially used as thermal-barrier coating materials to protect against oxidation and corrosion of heat-resistant alloys at elevated temperatures. Currently, $ZrO_2-Y_2O_3$(8%) thermal-spray powder is made using the industrial co-precipitation process, which is very complex and requires a lot of time. In this study, orthorhombic $ZrO_2$ and $Y_2O_3$ powders were fabricated by mechanical mixing, which is more economical than the co-precipitation process. A tetragonal, yttria-stabilized zirconia(YSZ) coating-layer was produced by plasma spraying, using orthorhombic $ZrO_2-Y_2O_3$(8%) powder. Our experimental results indicate that $ZrO_2-Y_2O_3$(8%) mixed powder can be used economically in industry because it is no longer necessary to make this powder by liquid and gas-phase methods.

Properties of Al2O3-15v/o ZrO2(+3m/o Y2O3) Powder Prepared by Co-Precipitation Method (공침법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.210-220
    • /
    • 1989
  • The properties of the powder of Al2O3-15v/o ZrO2(+3m/o Y2O3) system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide decreased the specific surface area of aluminum hydroxide of AlOOH type, while increased the specific surface area of aluminum hydroxide of Al(OH)3 type, and formed co-network structure of Al-O-Zr type with the aluminum hydroxides. The rate of transition to $\alpha$-Al2O3 from co-precipitated materials occurred in the order of 7≒10, 9 and 11 of pH values. Al2O3 and ZrO2 interacted to bring about coupled grain growth, and the growth of ZrO2 crystallite size rapidly occurred within $\theta$-Al2O3 matrix. Segregation did not occur in the system Al2O3-15v/o ZrO2(+3m/o Y2O3) and Y2O3 acted as a stabilizer to ZrO2. The lattice strain of tetragonal ZrO2 was increased by the constraint effect of Al2O3 matrix.

  • PDF

Electrical Properties of Tape-Cast Zirconia Thin Plates with the Mixing Ratios of $3Y-ZrO_2$ and $8Y-ZrO_2$ Powders ($3Y-ZrO_2$$8Y-ZrO_2$ 분말의 혼합비율에 따른 테이프 캐스트된 지르코니아 박판의 전기적 성질의 변화)

  • 김선재;강대갑;김경호;정충환;박지연
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.969-974
    • /
    • 1994
  • After adding 8Y-ZrO2 powders to 3Y-ZrO2 powders at ratios of 0, 33, 50, 67, and 100% by weight, the mixed yttria-stabilized zirconia specimens were fabricated into thin plate using tape~casting method and then sintered at 150$0^{\circ}C$ for 4h in air. The crystalline structure, microstructure and electrical properties of the sintered zirconia thin plates were investigated by using X-ray diffractometer, scanning electron microscope and impedance analyser, respectively. At the temperatures higher than 75$0^{\circ}C$, the sintered thin plate with 33% 8Y-ZrO2 content shows higher mechanical properties and lower electrical resistivity than 8Y-ZrO2 thin plate which is generally used as an electrolyte for solid oxide fuel cells. This is due to the fact that the zirconia thin plates with low 8Y-ZrO2 content maintain the slope of low temperature region up to high temperatures, whereas at temperatures higher than 50$0^{\circ}C$ the slope decrease in the zirconia thin plates with high 8Y-ZrO2 content.

  • PDF

Microstructure and Mechanical Properties of $Al_2O_3$-$ZrO_2$-Nb Composites Prepared by Reaction Sintering (반응소결로 얻어진 $Al_2O_3$-$ZrO_2$-Nb 복합체의 미세구조와 기계적 성질)

  • ;;;R.J. Brook
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.422-428
    • /
    • 1991
  • The reaction sintering of Al2O3-ZrO2-Nb composite has been investigated using Al2O3, and ZrAl2 powders. Two kinds of specimens, 78.3Al2O3-14.0Nb2O5-7.7ZrAl2 in wt.% (AZN-5) and 72.3Al2O3-13.8Nb2O5-7.5ZrAl2-6.4ZrO2(AZN-10), were prepared. Powder compacts were sintered at various temperatures between 1$600^{\circ}C$ and 1$700^{\circ}C$ for 30 min in Ar. DTA and X-ray analysis have showen that a reaction between Nb2O5 and ZrAl2 started at 149$0^{\circ}C$ to form Al2O3, ZrO2, and Nb. The sintered density increased with the sintering temperature. AZN-10 specimen showed higher density than AZN-5 specimen for almost all the experimental conditions. Al2O3-ZrO2-Nb composite hot pressed after reaction sintering showed higher toughness and lower hardness than hot pressed Al2O3-ZrO2. The crack propagated through many metallic Nb particles which showed plastic deformation, and this is the cause of the increase in toughness of Al2O3-ZrO2-Nb composite over Al2O3-ZrO2.

  • PDF

Properties of the Powders of the System Al2O3-ZrO2-Y2O3 Prepared by Precipitation Method (침전법으로 제조한 Al2O3-ZrO2-Y2O3계 분말의 특성)

  • 김준태;홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 1988
  • The properties of the powders of the system Al2O3-ZrO2-Y2O3 prepared by precipitation method were investigated. Al2(SO4)3$.$18H2O3, ZrOCl2$.$8H2O and YCl3$.$6H2O were used as starting materials. Amorphous aluminum hydrate prepared by precipitation method was completely transformed to alpha Al2O3 as a result of calcining at 1100$^{\circ}C$ for 1 hr and gamma, delta and theta phases appeared as transition phases. In ZrO2-Y2O3 system prepared by co-precipitation method, the crystallization temperature of ZrO2 was increase with Y2O3 contents. The coupled crystallization occured in coprecipitated Al2O3-ZrO2-Y2O3 system, therefore the formation temperature of alpha Al2O3 and ZrO2-Y2O3 system. In this ternary system, the powder morphology showed a particular shape which was composed of large Al2O3 grains having small spherical ZrO2 particles within large Al2O3 grain and relatively large ZrO2 particles along the grian boundaries.

  • PDF

Hydrothermal Precipitation of PZT Powder (PZT분말의 수열합성에 관한 연구)

  • 이경희;이병하;대문정기;천하희흥지;강원호;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.397-403
    • /
    • 1987
  • Pb(Zr0.52Ti0.48)O3 powders were prepared by hydrothermal synthesis. Using soluble salts such as Pb(NO3)2, TiCl4 and ZrOCl2$.$8H2O and oxide such as PbO and TiO2 as starting materials, PZT powder was hydrothermally synthesized at the temperature range between 150$^{\circ}C$ and 200$^{\circ}C$. The result showed that reactivity by alkali was decreased in the sequence of Pb(NO3)2, TiCl4, ZrOCl2, PbO, TiO2 and ZrO2. Using the first three soluble salts, PZT powder was synthesiged at 150$^{\circ}C$ for 1hr. In PbO-TiCl4-ZrOCl2 system, PZT powder was synthesized at 150$^{\circ}C$ for 8rs. In Pb(NO3)2-TiO2-ZrOCl2 system, PZT powder was synthesized at 150$^{\circ}C$ for 16hrs, in PbO-TiO2-ZrOCl2 system, the powder was synthesized at 200$^{\circ}C$ for 8hrs.

  • PDF