• Title/Summary/Keyword: $ZrO_2/{Al_2}{O_3}$ composite

Search Result 83, Processing Time 0.027 seconds

Densification and Thermo-Mechanical Properties of Al2O3-ZrO2(Y2O3) Composites

  • Kim, Hee-Seung;Seo, Mi-Young;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.515-518
    • /
    • 2006
  • The microstructure of $ZrO_2$ toughened $Al_2O_3$ ceramics was carefully controlled so as to obtain dense and fine-grained ceramics, thereby improving the properties and reliability of the ceramics for capillary applications in semiconductor bonding technology. $Al_2O_3-ZrO_2(Y_2O_3)$ composite was produced via Ceramic Injection Molding (CIM) technology, followed by Sinter-HIP process. Room temperature strength, hardness, Young's modulus, thermal expansion coefficient and toughness were determined, as well as surface strengthening induced by the fine grained homogenous microstructure and the thermal treatment. The changes in alumina/zirconia grain size, sintering condition and HIP treatment were found to be correlated.

Preparation of Al2O3-ZrO2 Composite Powders by the Use of mulsions : II. Emulsion-Hot Kerosene Drying Method (에멀젼을 이용한 Al2O3-ZrO2 복합분체의 제조 : II. 에멀젼-가열석유 증발법)

  • 현상훈;백종규
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.284-292
    • /
    • 1988
  • Alumina-zirconia composite powders for the purpose of improving fracture toughness and thermal shock resistance of alumina were prepared by the emulsion-kerosene drying method. The average particle size of composite powders was less then 1 $\mu\textrm{m}$ and their shapes were spherical. It was shown that the average particle size of composite powders decreased with the concentration of metal-salt in solution and the amount of span 80 added when preparing emulsions. The structure of all zirconia in composite powders heat-treated at 1200$^{\circ}C$ was a tetragonal form at room temperature. This result implied that fine zirconia particles were homogeneously dispersed in the alumina matrix.

  • PDF

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

Properties and Manufacture of $\beta-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering(II) (액상소결에 의한 $\beta-SiC-ZrB_2$ 복합체의 제조와 특성(II))

  • Yoon, Se-Won;Hwang, Chul;Ju, Jin-Young;Shin, Yong-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.92-97
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC+39vol. %ZrB2 electroconductive ceramic composites were investigated by adding 1, 2, 3wt% Al2O3+Y2O3(6:4wt%) of the liquid forming additives. In this microstructures, no reactions were observed between $\beta-SiC$ and ZrB2. The relative density is over 90.8% of the theoretical density and the porosity decreased with increasing Al2O3+Y2O3 contents. Phase analysis of the composites by XRD revealed $\alpha-SiC(6H, 4H)$, ZrB2 and $\beta-SiC$(15R). Flexural srength showed the highest of 315.5MPa for composites added with 3wt% Al2O3+Y2O3 additives as room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 5.5MPa.m1/2 and 5.3MPa.m1/2 for composites added with 2wt% and 3wt% Al2O3+Y2O3 additives respectively at room temperature. The area fraction of the elongated SiC grain in the etched surface of sample showed 65% and 65.1% for composite added with 2wt% and 3wt% Al2O3+Y2O3 additives respectively. The electrical resistivity at room temperature. The electrical resistivity of the composites wall all positive temperature coefficient(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

The Fabrication of Low Shrinkage, Reaction-Bonded Alumina/Zirconia Composite (저수축 반응소결 알루미나/지르코니아 복합체의 제조)

  • 박정현;김용남;김성훈;강민수;송규호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.211-218
    • /
    • 2000
  • The attrition-milled powder mixtures of Al and Al2O3 were oxidized below 140$0^{\circ}C$ for 1 hr and post-sintered at 150$0^{\circ}C$ and 1$600^{\circ}C$ for 2 hr. During attrition milling, ZrO2 was added to the system by grinding effect of ZrO2 balls. The average particle size of the powder mixtures was decreased by the attrition milling as the aluminum content decrease. Above 120$0^{\circ}C$, sintering behaviro was observed on the fine Al2O3 particles resulted from the oxidation of Al. The specimens heat-treated at 140$0^{\circ}C$ for 1 hr showed the bending strength of 166 MPa and hardness of 220 MPa. The specimens post-sintered at 1$600^{\circ}C$ for 2hr had a linear shrinkage of 9~12% and a relative density of about 95%. After the post-sintering, the specimens having 55 vol% Al content revealed the bending strength of 513 MPa and hardness of 718 MPa. The Weibull modulus to the bending strength was about 16.

  • PDF

Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System (액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Microstructure and Mechanical Properties of Alumina/Zirconia Layered Composites (알루미나/지르코니아 층상 복합체의 미세구조 및 기계적 성질)

  • Lyu, Seung-Woo;Park, Young-Min;Yang, Tae-Young;Ryu, Su-Chak;Kim, Young-Woo;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.193-197
    • /
    • 2006
  • Symmetric three-layer $Al_2O_3/ZrO_2$ composite has been prepared by freeze casting and pressureless sintering at $1400-1600^{\circ}C$ in air. The layered material sintered at $1600^{\circ}C$ showed the maximum fracture strength (410 MPa), measured by a four-point bending test. Contact damage strength was superior in three-layer composite compared with corresponding mono-layered material, possibly due to the development of relatively large compressive stress. The grain growth of $ZrO_2$ particles was mainly governed by coalescence mechanism.

Flaw Tolerance of (Y,Nb)-TZP/${Al_2}{O_3}$Composites ((Y,Nb)-TZP/${Al_2}{O_3}$복합체의 결함 저항성)

  • 이득용;김대준;이명현;장주웅
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • 90.24 mol% ZrO$_2$-5.31 mol% $Y_2$O$_3$-4.45 mol% Nb$_2$O$_{5}$ 조성의 (Y,Nb)-TZP와 (Y,Nb)-TZP/Al$_2$O$_3$복합체를 155$0^{\circ}C$~1$600^{\circ}C$에서 1~2시간 소결하여 제조하였다. 시편의 결함에 대한 저항성을 조사하기 위하여 R-curve, Weibull modulus, slow crack growth 변수 등을 조사하였다. 실험결과, (Y,Nb)-TZP와 (Y,Nb)-TZP/Al$_2$O$_3$복합체 모두 상용 3Y-TZP 보다 우수한 결함 저항성이 관찰되었다. (Y,Nb)-TZP/Al$_2$O$_3$복합체의 결함 저항성은 $Al_2$O$_3$첨가에 의한 결정립 가교 인화, 분산강화, R-curve 효과에 의한 것으로 추정된다.

  • PDF

Wear Properties of Thermal Sprayed Al-based Metal Matrix Composites Against Different Counterparts (용사법에 의해 제조된 $Al/Al_2O_3$ 복합재료의 상대재에 따른 마모특성)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • This study aims at investigating the wear properties of thermally sprayed $Al/Al_2O_3$ metal matrix composite(MMC) coating against different counterparts. $Al/Al_2O_3$ MMC coatings were fabricated using a flame spray system on an Al 6061 substrate. Dry sliding wear tests were performed using the sliding speeds of 0.2m/s and the applied loads of 1 and 2 N. AISI 52100, $Al_2O_3$, $Si_3N_4\;and\;ZrO_2$ balls(diameter: 8mm) were used as counterpart materials. Wear properties of $Al/Al_2O_3$ MMC coatings were analyzed using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear properties of $Al/Al_2O_3$ composite coatings were much influenced by counterpart materials. In the case of AISI 52100 used as counterparts, the wear rate of composites coating layer increased according to the increase of the applied load. On the contrary, in the case of ceramics used as counterparts, the wear rate of composites coating layer decreased according to the increase of the applied load.

  • PDF

Characteristics and Effects for the Mechanical Properties on the Wearness of the ZTA System with $Cr_2O_3$ and $HfO_2$) as Additives (ZTA계에서 첨가물($Cr_2O_3$, $HfO_2$)에 따른 물성 변화 및 기계적 성질이 마모성에 미치는 영향)

  • 최성철;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.369-382
    • /
    • 1990
  • ZrO2-Toughened Alumina-Ceramics(ZTA) with Cr2O3 and HfO2 as addition were synthesized by assintering method for solid solution of Al2O3/Cr2O3 and ZrO2/HfO2, and were prepared by pressureless sintering at 1$600^{\circ}C$. The effects of Cr2O3 and HfO2 on the thermal and mechanical properties, the sintering mechanism, and the wearness between theory and experiment were investigated. Among three kinds of mechanisms such as stress-induced transformation, microcracking, and crack deflection it contributed to the ZTA system with a few exceptons according to composite. We show that wearness can be estimated sufficiently by HV and KIC through theory and experiment.

  • PDF