• 제목/요약/키워드: $ZrB_2$-ZrC composite

검색결과 53건 처리시간 0.044초

고온가압소결한 SiC-ZrB$_2$ 복합체의 기계적, 전기적 특성 (Mechanical and Electrical Properties of Hot-Pressed Silicon Carbide-Zirconium Diboride Composites)

  • 신용덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.135-140
    • /
    • 1997
  • The influences of ZrB$_2$ additions to SiC on microstructural, DDM(Electrical Discharge Machining), mechanical and electrical properties were investigated. composites were prepared by adding 15, 30, 45 vol.% ZrB$_2$particles as a second phase to SiC matrix. SiC-ZrB$_2$ composites obtained by hot pressing for high temperature structural application were fully dense with the relative densities over 99%. The fracture toughness of the composites were increased with the ZrB$_2$contents. In case of composite containing 30vol.% ZrB$_2$, the flexural strength and fracture toughness showed 45% and 60% increase, respectively compared to that of monolithic SiC sample. The electrical resistivities of SiC-ZrB$_2$ composites decreased significantly with the ZrB$_2$ contents. The electrical resistivity of SiC-30vol.% ZrB$_2$ composite showed 6.50$\times$10$^{-4}$ $\Omega$.cm. Cutting velocity of EDM of SiC-ZrB$_2$ composites are directly proportional to duty factor of pulse width. Surface roughness, however, are not all proportional to pulse width. Higher-flexural strength composites show a trend toward smaller crater volumes, leaving a smoother surface; the average surface roughness of the SiC-ZrB$_2$ 15 vol.% composite with the flexural strengthe of 375㎫ was 3.2${\mu}{\textrm}{m}$, whereas the SiC-ZrB$_2$ 30.vol% composite of 457㎫ was 1.35${\mu}{\textrm}{m}$. In the SEM micrographs of the fracture surface of SiC-ZrB$_2$ composites, the SiC-ZrB$_2$ two phases are distinct; the white phase is the ZrB$_2$and the gray phase is the SiC matrix. In the SEM micrographs of the EDM surface, however, these phases are no longer distinct because of thicker recast layer of resolidified-melt-formation droplets present. It is shown that SiC-ZrB$_2$ composites are able to be machined without surface cracking.

  • PDF

The Development of an Electroconductive SiC-ZrB2 Ceramic Heater through Spark Plasma Sintering

  • Ju, Jin-Young;Kim, Cheol-Ho;Kim, Jae-Jin;Lee, Jung-Hoon;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.538-545
    • /
    • 2009
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40 and 45vol.% of Zirconium Diboride (hereafter, $ZrB_2$) powders with Silicon Carbide (hereafter, SiC) matrix. The SiC-$ZrB_2$ composites, the sintered compacts, were produced through Spark Plasma Sintering (hereafter, SPS), and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffractometer (hereafter, XRD) analysis. The relative density of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, and SiC+45vol.%$ZrB_2$ composites were 88.64%, 76.80%, 79.09% and 88.12%, respectively. The XRD phase analysis of the sintered compacts demonstrated high phase of SiC and $ZrB_2$ but low phase of $ZrO_2$. Among the SiC-$ZrB_2$ composites, the SiC+35vol.%$ZrB_2$ composite had the lowest flexural strength, 148.49MPa, and the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 204.85MPa, at room temperature. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites were $6.74\times10^{-4}$, $4.56\times10^{-3}$, $1.92\times10^{-3}$, and $4.95\times10^{-3}\Omega{\cdot}cm$ at room temperature, respectively. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$ SiC+40vol.%$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites had Positive Temperature Coefficient Resistance (hereafter, PTCR) in the temperature range from $25^{\circ}C$ to $500^{\circ}C$. The V-I characteristics of the SiC+40vol.%$ZrB_2$ composite had a linear shape. Therefore, it is considered that the SiC+40vol.%$ZrB_2$ composite containing the most outstanding mechanical properties, high resistance temperature coefficient and PTCR characteristics among the sintered compacts can be used as an energy friendly ceramic heater or electrode material through SPS.

SiC-ZrB$_2$계 도전성 복합 세라믹스의 방전가공 (Electrical discharge Machining of SiC-ZrB$_2$Electroconductive Ceramic Composities)

  • 신용덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.320-325
    • /
    • 1996
  • The influences of ZrB$_2$additives to the SiC and pulse width on electrical discharge machining of SiC-ZrB$_2$electroconductive ceramic composites were investigated. IIigher-flexural strength materials show a trend toward smaller crater volumes, leaving a soother surface; the average surface roughness of the SiC-ZrB$_2$15 Vol.% Composite with the flexural strength of 375㎫ was 3.2${\mu}{\textrm}{m}$,whereas the SiC-ZrB$_2$30 Vol.% composite of 457㎫ was 1.35${\mu}{\textrm}{m}$. In the SEM micrographs of the fracture surface of SiC-ZrB$_2$composites, the SiC-ZrB$_2$two phaes are distinct; the white phase is the ZrB$_2$. In the micrograph of the EDM surface, however, these phases are no longer distinct because of thicker recast layer of resolidified-melt-formation droplets present.

  • PDF

SPS 소결에 의한 $SiC-ZrB_2$ 도전성 세라믹 복합체 특성 (Properties of $SiC-ZrB_2$ Electroconductive Ceramic Composites by Spark Plasma Sintering)

  • 주진영;이희승;조성만;이정훈;김철호;박진형;신용덕
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1757-1763
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 20, 25[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by Spark Plasma Sintering(hereafter, SPS) were examined. Reactions between ${\beta}-SiC$ and $ZrB_2$ were not observed in the XRD analysis. The relative density of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 90.93[%], 74.62[%], 74.99[%] and 72.61[%], respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of $ZrO_2$ phase. The lowest flexural strength, 108.79[MPa], shown in SiC+15[vol.%] $ZrB_2$ composite and the highest - 220.15[MPa] - in SiC+20[vol.%] $ZrB_2$composite at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites moves in accord with that of the relative density. The electrical resistivities of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 4.57${\times}10^{-1}$, 2.13${\times}10^{-1}$, 1.53${\times}10^{-1}$ and 6.37${\times}10^{-2}$[${\Omega}$ cm] at room temperature, respectively. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$. SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ are Negative Temperature Coefficient Resistance(hereafter, NTCR) in temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$]. The declination of V-I characteristics of SiC+20[vol.%]$ZrB_2$ composite is 3.72${\times}10^{-1}$. It is convinced that SiC+20[vol.%]$ZrB_2$ composite by SPS can be applied for heater or electrode above 1000[$^{\circ}C$]

단일상 ZrB$_{2 }$ 및 ZrB$_{2 }$- ZrC 복합체의 소결특성 (Sintering characteristics of monolithic ZrB$_{2 }$ and ZrB$_{2 }$-ZrC composit)

  • 김경훈;심광보
    • 한국결정성장학회지
    • /
    • 제10권2호
    • /
    • pp.145-151
    • /
    • 2000
  • 상압 소결법(pressureless sintering)법을 이용하여 희토류 원소인 lanthanum neodymium을 소결조제로서 첨가하여 단일상 ZrB$_{2 }$및 ZrB$_{2 }$ and ZrB$_{2 }$-ZrC 복합제를 제조하여 그 소결거동과 미세구조에 대하여 X-선회절분석, 주사전자현미경(SEM)을 이용하여 조사하였다. 소결체의 특성은, 단일상 ZrB$_{2 }$의 경우 $2200^{\circ}C$에서 La 1wt%가 첨가된 경우에 상대밀도 96% 정도의 고밀도 소결체를 얻을 수 있었으며, ZrB$_{2 }$ and ZrB$_{2 }$-ZrC 복 합체의 경우 소결 조제를 첨가하지 않은 경우에 가장 놓은 밀도의 소결체를 얻을 수 있었다.

  • PDF

Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Kim, In-Yong;Kang, Myeong-Kyun;Jeon, Jun-Soo;Lee, Seung-Hoon;Jeon, An-Gyun;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1474-1480
    • /
    • 2013
  • Silicon carbide (SiC)-zirconium diboride ($ZrB_2$) composites were prepared by subjecting a 60:40 vol% mixture of ${\beta}$-SiC powder and $ZrB_2$ matrix to spark plasma sintering (SPS) in 15 $mm{\Phi}$ and 20 $mm{\Phi}$ molds. The 15 $mm{\Phi}$ and 20 $mm{\Phi}$ compacts were sintered for 60 sec at $1500^{\circ}C$ under a uniaxial pressure of 50 MPa and argon atmosphere. Similar composites were simulated using $Flux^{(R)}$ 3D computer simulation software. The current and power densities of the specimen sections of the simulated SiC-$ZrB_2$ composites were higher than those of the mold sections of the 15 $mm{\Phi}$ and 20 $mm{\Phi}$ mold simulated specimens. Toward the centers of the specimen sections, the current densities in the simulated SiC-$ZrB_2$ composites increased. The power density patterns of the specimen sections of the simulated SiC-$ZrB_2$ composites were nearly identical to their current density patterns. The current densities of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composites were higher than those of the 20 $mm{\Phi}$ mold in the center of the specimen section. The volume electrical resistivity of the simulated SiC-$ZrB_2$ composite was about 7.72 times lower than those of the graphite mold and the punch section. The power density, 1.4604 $GW/m^3$, of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composite was higher than that of the 20 $mm{\Phi}$ mold, 1.3832 $GW/m^3$. The $ZrB_2$ distributions in the 20 $mm{\Phi}$ mold in the sintered SiC-$ZrB_2$ composites were more uniform than those of the 15 $mm{\Phi}$ mold on the basis of energy-dispersive spectroscopy (EDS) mapping. The volume electrical resistivity of the 20 $mm{\Phi}$ mold of the sintered SiC-$ZrB_2$ composite, $6.17{\times}10^{-4}{\Omega}cm$, was lower than that of the 15 $mm{\Phi}$ mold, $9.37{\times}10^{-4}{\Omega}{\cdot}cm$, at room temperature.

SHS 마이크로파에 의한 TiZrB$_2$ 복합재료의 합성 및 특성연구 (A Study on Synthesis and Characterization of TiZrB$_2$ Composite by SHS Microwave)

  • 이형복;윤영진;오유근;안주삼
    • 한국세라믹학회지
    • /
    • 제36권1호
    • /
    • pp.7-14
    • /
    • 1999
  • SHS 마이크로파를 이용하여 티타늄, 지르코니움과 보론분말을 혼합하여 TiZrB2 고용체를 합성된 분말의 분말특성과 소결체의 소결특성을 연구하였다. 합성 중 온도 profile 결과 연소온도와 연소속도는 Zr의 몰비가 증가함에 따라 증가 하였으며, Ti0.2Zr0.8B2조서에서 연소온도와 연소속도는 285$0^{\circ}C$, 14.6m/sec로 최고값을 얻었다. 190$0^{\circ}C$에서 30 MPa의 압력으로 60분간 고온가압소결한 TiZrB2고용체는 TiB2와 ZrB2로 상분리가 최고값을 얻었다. 190$0^{\circ}C$에서 30MPa의 압력으로 60분간 고압가압소결한 TiZrB2 고용체는 TiB2와 ZrB2로 상분리가 일어나 복합체가 형성되었으며, Ti0.8Zr0.2B2에서 가장 좋은 물성값을 나타내었는데 상대밀도, 꺽임강도, 파괴인성 및 경도는 각각 99%, 680MPa, 7.3MPam1/2, 2750Kg/$ extrm{mm}^2$이었다.

  • PDF

액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響) (Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System)

  • 신용덕;주진영;고태헌
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

천이금속에 따른 SiC계 복합체의 전기적 특성 (Electrical Properties of SiC Composites by Transition Metal)

  • 신용덕;서재호;주진영;고태헌;김영백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1303-1304
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%]SiC-39[vol.%]$TiB_2$ and using 61[vol.%]SiC-39[vol.%]$ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_{2}O_{3}+Y_{2}O_{3}$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was occurred on the SiC-$TiB_2$ and SiC-$ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 226.06[Mpa] and 86.38[Gpa] in SiC-$ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SiC-$ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the SiC-$TiB_2$ and SiC-$ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the value of $6.88{\times}10^{-3}/[^{\circ}C]$ and $3.57{\times}10^{-3}/[^{\circ}C]$ for SiC-$ZrB_2$ and SiC-$TiB_2$ composite in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$.

  • PDF