• Title/Summary/Keyword: $ZnO-Zn_2SnO_4-SnO_2$

Search Result 147, Processing Time 0.034 seconds

The Properties of the Several Metal Oxides in the Water-splitting for H2 Production (물 분해 수소제조를 위한 금속산화물들의 반응특성)

  • Son, Hyun-Myung;Park, Chu-Sik;Lee, Sang-Ho;Hwang, Gab-Jin;Kim, Jong-Won;Lee, Jin-Bae
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.268-275
    • /
    • 2003
  • The water-splitting process by the metal oxides using solar heat is one of the hydrogen production method. The hydrogen production process using the metal oxides (NiFe2O4/NiAl2O4,CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite) was carried out by two steps. The first step was carried out by the CH4-reduction to increase activation of metal oxides at operation temperature. And then, it was carried out the water-splitting reaction using the water at operation temperature for the second step. Hydrogen was produced in this step. The production rates of H2 were 110, 160, 72, 29, 17, $21m{\ell}/hr{\cdot}g-_{Metal\;Oxide}$ for NiFe2O4/NiAl2O4, CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite respectively in the second step. CoFe2O4/CoAl2O4 had higher H2 production rate than the other metal oxides.

Characteristics of ISZO and IZSO films deposited using magnetron co-sputtering system by two cathodes (마그네트론 2원 동시 방전법을 이용하여 증착한 ISZO 및 IZSO 박막의 특성에 관한 연구)

  • Lee, Dong-Yeop;Lee, Jeong-Rak;Lee, Geon-Hwan;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.91-92
    • /
    • 2007
  • In-Sn-Zn-O (ISZO)박막과 In-Zn-Sn-O (IZSO)박막은 상온에서 2개의 캐소드 (DC, RF)를 이용하여 마그네트론 2원 동시 방전법에 의해 polyethylene terephthalate (PET)기판 위에 실온에서 증착되었다. ISZO 박막의 경우, Zn함량이 증가함에 따라 비저항은 증가하였지만, Zn원자의 도입에 의해 표면 조도는 개선되었다. 반면, IZSO 박막의 경우, 최저비저항 ($3.17$ ${\times}$ $10^{-4}$ ${\Omega}cm$)은 $SnO_2$ 타켓의 RF power 40W에서 얻어졌지만, Sn원자의 도입에 의해 표면 조도는 거칠어졌다. XRD 측정 결과 모든 박막은 비정질 구조로 사료되고, 가시광선 영역에서 80% 이상의 높은 투과율을 보였다.

  • PDF

Sputtered Al-Doped ZnO Layers for Cu2ZnSnS4 Thin Film Solar Cells

  • Lee, Kee Doo;Oh, Lee Seul;Seo, Se-Won;Kim, Dong Hwan;Kim, Jin Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.688-688
    • /
    • 2013
  • Al-doped ZnO (AZO) thin films have attracted a lot of attention as a cheap transparent conducting oxide (TCO) material that can replace the expensive Sn-doped In2O3. In particular, AZO thin films are widely used as a window layer of chalcogenide-based thin film solar cells such as Cu(In,Ga)Se2 and Cu2ZnSnS4 (CZTS). Mostly important requirements for the window layer material of the thin film solar cells are the high transparency and the low sheet resistance, because they influence the light absorption by the activelayer and the electron collection from the active layer, respectively. In this study, we prepared the AZO thin films by RF magnetron sputtering using a ZnO/Al2O3 (98:2wt%) ceramic target, and the effect of the sputtering condition such as the working pressure, RF power, and the working distance on the optical, electrical, and crystallographic properties of the AZO thin films was investigated. The AZO thin films with optimized properties were used as a window layer of CZTS thin film solar cells. The CZTS active layers were prepared by the electrochemical deposition and the subsequent sulfurization process, which is also one of the cost-effective synthetic approaches. In addition, the solar cell properties of the CZTS thin film solar cells, such as the photocurrent density-voltage (J-V) characteristics and the external quantum efficiency (EQE) were investigated.

  • PDF

A Study on the Electromagnetic Property of NiCuZn Ferrite by Additive SnO2, CaO. (SnO2, CaO가 NiCuZn Ferrite의 전자기적 특성에 미치는 영향 연구)

  • Kim, Hwan-Chul;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.121-126
    • /
    • 2003
  • The electromagnetic properties and microstructures of the basic composition of (N $i_{0.2}$C $u_{0.2}$Z $n_{0.6}$)$_{1.085}$(F $e_2$ $O_3$)$_{0.915}$ were invested by changing of the additive Sn $O_2$, CaO amounts and ferrite processes. There is no variation of grain size by changing additive amount. It can reduce the total loss when (N $i_{0.2}$C $u_{0.2}$Z $n_{0.6}$)$_{1.085}$(F $e_2$ $O_3$)$_{0.915}$ composition sintered at 1150 $^{\circ}C$ better than 130$0^{\circ}C$. Additive CaO confirmed of useful addition for the reduce total loss, because it increasing sintering density. Decreasing total loss were observed by adding both Sn $O_2$ 0.06 wt% and CaO 0.4 wt%.

A Study on the Effect of Low-loss Additives on the Property of NiCuZn Ferrite (저손실 첨가제가 NiCuZn Ferrite 특성에 미치는 영향 연구)

  • Kim, Hwan-Chul;Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.531-536
    • /
    • 2003
  • The electromagnetic properties and microstructures of the ferrites based on ($Ni_{0.2}$ $Cu_{0.2}$ $Zn_{0.6}$)$_{1.085}$($Fe_2$$O_3$)$_{0.915}$ were investigated by changing the amount of additive SnO$_2$and CaO and the sintering temperatures. Addition of $SnO_2$caused pores in the specimen. There was no variation of grain size by changing the amount of additives. Total loss was reduced when ($Ni_{0.2} $Cu_{0.2}$ $Zn_{ 0.6}$)$_{1.085}$ ($Fe_2$$O_3$)$_{0.915}$ composition was sintered at $1150^{\circ}C$ rather than $1300^{\circ}C$. Addition of CaO was useful to reduce the total loss because it increased the sintering density. The lowest total loss was obtained when 0.06 wt% $SnO_2$and 0.4 wt% CaO were added at the same time.

Hydrogen shallow donors in ZnO and $SnO_2$ thin films prepared by sputtering methods

  • Kim, Dong-Ho;Kim, Hyeon-Beom;Kim, Hye-Ri;Lee, Geon-Hwan;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.145-145
    • /
    • 2010
  • In this paper, we report that the effects of hydrogen doping on the electrical and optical properties of typical transparent conducting oxide films such as ZnO and $SnO_2$ prepared by magnetron sputtering. Recently, density functional theory (DFT) calculations have shown strong evidence that hydrogen acts as a source of n-type conductivity in ZnO. In this work, the beneficial effect of hydrogen incorporation on Ga-doped ZnO thin films was demonstrated. It was found that hydrogen doping results a noticeable improvement of the conductivity mainly due to the increases in carrier concentration. Extent of the improvement was found to be quite dependent on the deposition temperature. A low resistivity of $4.0{\times}10^{-4}\;{\Omega}{\cdot}cm$ was obtained for the film grown at $160^{\circ}C$ with $H_2$ 10% in sputtering gas. However, the beneficial effect of hydrogen doping was not observed for the films deposited at $270^{\circ}C$. Variations of the electrical transport properties upon vacuum annealing showed that the difference is attributed to the thermal stability of interstitial hydrogen atoms in the films. Theoretical calculations also suggested that hydrogen forms a shallow-donor state in $SnO_2$, even though no experimental determination has yet been performed. We prepared undoped $SnO_2$ thin films by RF magnetron sputtering under various hydrogen contents in sputtering ambient and then exposed them to H-plasma. Our results clearly showed that the hydrogen incorporation in $SnO_2$ leads to the increase in carrier concentration. Our experimental observation supports the fact that hydrogen acting as a shallow donor seems to be a general feature of the TCOs.

  • PDF

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

RF magnetron sputtering에 의해 제작된 $SnO_2$ 투명전극의 구조적 및 광학적 특성

  • Im, Jeong-U;Lee, Dong-Hun;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.205-205
    • /
    • 2010
  • 투명 전극(transparent conducting oxide, TCO)은 높은 전기전도도 및 낮은 비저항 ($10^{-4}{\sim}10^{-3}\;{\Omega}cm$)과 가시광영역에서의 우수한 광투과도(> 80%) 특성을 가지며, 주로 디스플레이, 태양전지, 가스 센서 소자 등에 쓰인다. 투명전극으로 쓰이는 대표적인 물질로서는 ITO, ZnO, $SnO_2$ 등이 있으며, ITO는 전기적 특성이 우수하여 널리 사용되고 있으나 가격이 비싸고 화학적으로 불안정하고, ZnO는 ITO에 비해 가격이 저렴하지만 고온에서 불안정한 특성을 가지고 있다. 반면, $SnO_2$는 ITO와 ZnO에 비해 전기적 특성은 떨어지지만, 우수한 열적, 화학적 안정성 및 높은 내마모성을 가지고 제조단가가 저렴하여 TCO 재료로 많은 연구가 진행되고 있다. TCO 박막을 증착시키는 방법으로 CVD, ion plating, sputtering, spray pyrolysis 등이 있으며, 이 중 sputtering 방법은 균일한 입자로 균질의 박막을 입힐 수 있고 우수한 재현성과 낮은 온도에서도 증착이 가능하여 박막 제조 방법으로 널리 이용되고 있다. 본 연구에서는 $SnO_2$ 박막을 실리콘 (100) 및 글라스 (Eagle 2000) 기판 위에 RF magnetron sputtering 방법을 사용하여 제작하였다. 박막 증착을 위해 99.99%의 2 인치 un-doped $SnO_2$ 타겟을 사용하였고, 기판은 20 rpm 으로 회전시켜 균일한 박막이 형성될 수 있도록 하였으며, 초기 진공도는 $1{\times}10^{-6}\;Torr$가 되도록 하였다. 증착 변수로 기판-타겟간 거리, RF 파워, $O_2/(Ar+O_2)$ 비, 공정압력, 기판 온도 등을 각각 변화 시키며 $SnO_2$ 박막을 증착하였다. 증착된 박막의 구조적 및 광학적 특성을 분석하기위해 FE-SEM, AFM, XRD, UV/VIS spectrophotometer, Photoluminescence 등을 사용하였다.

  • PDF

Improvement of Cu2ZnSnS4 Solar Cell Characteristics with Zn(Ox,S1-x) Buffer Layer (Zn(Ox,S1-x) 버퍼층 적용을 통한 Cu2ZnSnS4 태양전지 특성 향상)

  • Yang, Kee-Jeong;Sim, Jun-Hyoung;Son, Dae-Ho;Lee, Sang-Ju;Kim, Young-Ill;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.93-98
    • /
    • 2017
  • This experiment investigated characteristic changes in a $Cu_2ZnSnS_4$(CZTS) solar cell by applying a $Zn(O_x,S_{1-x})$ butter layer with various compositions on the upper side of the absorber layer. Among the four single layers such as $Zn(O_{0.76},S_{0.24})$, $Zn(O_{0.56},S_{0.44})$, $Zn(O_{0.33},S_{0.67})$, and $Zn(O_{0.17},S_{0.83})$, the $Zn(O_{0.76},S_{0.24})$ buffer layer was applied to the device due to its bandgap structure for suppressing electron-hole recombination. In the application of the $Zn(O_{0.76},S_{0.24})$ buffer layer to the device, the buffer layer in the device showed the composition of $Zn(O_{0.7},S_{0.3})$ because S diffused into the buffer layer from the absorber layer. The $Zn(O_{0.7},S_{0.3})$ buffer layer, having a lower energy level ($E_V$) than a CdS buffer layer, improved the $J_{SC}$ and $V_{OC}$ characteristics of the CZTS solar cell because the $Zn(O_{0.7},S_{0.3})$ buffer layer effectively suppressed electron-hole recombination. A substitution of the CdS buffer layer by the $Zn(O_{0.7},S_{0.3})$ buffer layer improved the efficiency of the CZTS solar cell from 2.75% to 4.86%.