• 제목/요약/키워드: $ZnIn_2Se_4$

검색결과 232건 처리시간 0.137초

광발광 측정으로부터 얻어진 $ZnIn_2Se_4$ 박막의 열처리 효과 (Effect of thermal annealing for $ZnIn_2Se_4$ thin films obtained by photoluminescience measurement)

  • 홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.120-121
    • /
    • 2009
  • Single crystalline $ZnIn_2Se_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $400^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating, $ZnIn_2Se_4$ source at $630^{\circ}C$. After the as-grown $ZnIn_2Se_4$ single crystalline thin films was annealed in Zn-, Se-, and In-atmospheres, the origin of point defects of $ZnIn_2Se_4$single crystalline thin films has been investigated by the photoluminescence(PL) at 10 K The native defects of $V_{Zn}$, $V_{Se}$, $Zn_{int}$ and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Se-atmosphere converted $ZnIn_2Se_4$ single crystalline thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2Se_4$/GaAs did not form the native defects because In in $ZnIn_2Se_4$ single crystalline thin films existed in the form of stable bonds.

  • PDF

Hot Wall Epitaxy (HWE)법에 의한 ZnIn2Se4 단결정 후막 성장과 열처리 효과 (Growth and effect of thermal annealing for ZnIn2Se4 single crystalline thick film by hot wall epitaxy)

  • 홍명석;홍광준
    • 센서학회지
    • /
    • 제17권6호
    • /
    • pp.437-446
    • /
    • 2008
  • Single crystalline ${ZnIn_2}{Se_4}$ layers were grown on thoroughly etched semi-insulating GaAs (100) substrate at $400^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating ${ZnIn_2}{Se_4}$ source at $630^{\circ}C$. The crystalline structure of the single crystalline thick films was investigated by the photoluminescence (PL) and Double crystalline X-ray rocking curve (DCRC). The carrier density and mobility of ${ZnIn_2}{Se_4}$ single crystalline thick films measured from Hall effect by van der Pauw method are $9.41{\times}10^{16}cm^{-3}$ and $292cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ${ZnIn_2}{Se_4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=1.8622 eV-$(5.23{\times}10^{-4}eV/K)T^2$/(T+775.5 K). After the as-grown ${ZnIn_2}{Se_4}$ single crystalline thick films was annealed in Zn-, Se-, and In-atmospheres, the origin of point defects of ${ZnIn_2}{Se_4}$ single crystalline thick films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_{Se}$, $Zn_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Se-atmosphere converted ${ZnIn_2}{Se_4}$ single crystalline thick films to an optical p-type. Also, we confirmed that In in ${ZnIn_2}{Se_4}$/GaAs did not form the native defects because In in ${ZnIn_2}{Se_4}$ single crystalline thick films existed in the form of stable bonds.

Study on Indium-free and Indium-reduced thin film Solar absorber materials for photovoltaic application

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.54-62
    • /
    • 2007
  • In this paper, we report the research highlight on the preparation and characterization of Indium-free $Cu_2ZnSnSe_4$ and Indium-reduced $CulnZnSe_2$ thin films in order to seek the viability of these absorber materials to be applied in thin film solar cells. The films of $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ were prepared using mixed binary chalcogenides powders. It was observed that Cu concentration was a function of substrate temperature as well as CuSe mole ratio in the target. Under an optimized condition, $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ thin films grew with strong [112]. [220/204] and [312/116] reflections. Both $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ films were found to exhibit a high absorption coefficient of $104^4cm^{-1}\;Cu_2ZnSnSe_4$ film showed a band gap of 1.5eV which closes to the optimum band gap of an ideal solar absorber for a solar cell. On the other side, an increase of optical band gap from 1.0 to 1.25eV was found to be proportional with an increase of Zn concentration in the $CulnZnSe_2$ film. All films in this study revealed a p-type semiconductor characteristic.

  • PDF

$Zn_2AgGaSe_4$$Zn_2AgGaSe_4$ : $Co^{2+}$ 결정의 광학적 특성 (Optical properties of $Zn_2AgGaSe_4$ and $Zn_2AgGaSe_4$ : $Co^{2+}$ crystals)

  • 김형곤;김병철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 전문대학교육위원 P
    • /
    • pp.10-12
    • /
    • 1999
  • Optical properties of $Zn_2AgGaSe_4$ and $Zn_2AgGaSe_4$:$Co^{2+}$ crystals are investigated in the visible and near-infrared regions at 298K. The direct band gap at 298K is 1.630eV for the $Zn_2AgGaSe_4$ and 1.567eV for the $Zn_2AgGaSe_4$:$Co^{2+}$ crystals, respectively. In the optical absorption and PAS spectrum of the $Zn_2AgGaSe_4$:$Co^{2+}$, we observed five impurity absorption peaks at $4220cm^{-1}$, $5952cm^{-1}$, $12422cm^{-1}$, $12987cm^{-1}$ and $14184cm^{-1}$. These impurity absorption peaks are attributed to the electronic transitions between the split energy levels of $Co^{2+}$ ions with Td symmetry of $Zn_2AgGaSe_4$ host lattice. The crystal field parameter Dq, the Racah parameter B and the spin-orbit coupling parameter $\lambda$ are given by $442cm^{-1}$, $425cm^{-1}$ and $440cm^{-1}$, respectively.

  • PDF

$Zn_4SnSe_6$$Zn_4SnSe_6:Co^{2+}$단결정의 광학적 특성연구 (Optical Properties of Undoped and Doped$Zn_4SnSe_6$Single Crystals)

  • 이기형;김덕태;박광호;현승철;김형곤;김남오
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권1호
    • /
    • pp.1-5
    • /
    • 2003
  • Zn$_4$SnSe$_{6}$ and Zn$_4$SnSe$_{6}$ :Co$^{2+}$ single crystals were by the chemical transport reaction method. They crystallized in the monoclinic structure. The direct energy band gaps of the Zn$_4$SnSe$_{6}$ and Zn$_4$SnSe$_{6}$ :Co$^{2+}$single crystals at 289k were found to be 2.146eV and 2.042eV. Optical absorption due to impurity in the Zn$_4$SnSe$_{6}$ :Co$^{2+}$single crystal was observed and described as originating from the electron transition between energy levels of Co$^{2+}$ion sited at T$_{d}$ symmetry point.y point.

Zn2SnSe6 및 Zn4SnSe6:Co2+(0.5mol%) 단결정에서 열역학적 함수의 온도의존성 (Temperature dependence of thermodynamic function in Zn4SnSe6 and Zn4SnSe6:Co2+(0.5mol%) single crystals)

  • 김남오;김형곤;김덕태;송호준
    • 전기학회논문지P
    • /
    • 제52권2호
    • /
    • pp.68-73
    • /
    • 2003
  • $Zn_4SnSe_6$ and $Zn_4SnSe_6:Co^{2+}$ single crystals were grown by the chemical transport reaction(CTR) method. They were crystallized in the monoclinic structure. These temperature dependence of the optical energy gap were closely investigated over the temperature range 10[K]~300[K]. The direct energy gaps of $Zn_4SnSe_6$ and $Zn_4SnSe_6$:$Co^{2+}$ single crystals were given by 2.146[eV] and 2.042[eV] at 300[K]. The temperature dependence of the optical energy gap is well presented by the Varshni equation.

Characterization of Cu2ZnSnSe4 Thin Films Selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe Stacks

  • Munir, Rahim;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.183-189
    • /
    • 2013
  • $Cu_2ZnSn(S,Se)_4$ material is receiving an increased amount of attention for solar cell applications as an absorber layer because it consists of inexpensive and abundant materials (Zn and Sn) instead of the expensive and rare materials (In and Ga) in $Cu(In,Ga)Se_2$ solar cells. We were able to achieve a cell conversion efficiency to 4.7% by the selenization of a stacked metal precursor with the Cu/(Zn + Sn)/Mo/glass structure. However, the selenization of the metal precursor results in large voids at the absorber/Mo interface because metals diffuse out through the top CZTSe layer. To avoid the voids at the absorber/Mo interface, binary selenide compounds of ZnSe and $SnSe_2$ were employed as a precursor instead of Zn and Sn metals. It was found that the precursor with Cu/$SnSe_2$/ZnSe stack provided a uniform film with larger grains compared to that with $Cu_2Se/SnSe_2$/ZnSe stack. Also, voids were not observed at the $Cu_2ZnSnSe_4$/Mo interface. A severe loss of Sn was observed after a high-temperature annealing process, suggesting that selenization in this case should be performed in a closed system with a uniform temperature in a $SnSe_2$ environment. However, in the experiments, Cu top-layer stack had more of an effect on reducing Sn loss compared to $Cu_2Se$ top-layer stack.

$Zn_4SnSe_6$$Zn_4SnSe_6:Co^{2+}$단결정의 광학적 특성연구 (Optical properties of undoped and $Zn_4SnSe_6$ and $Zn_4SnSe_6:Co^{2+}$ Single Crystals)

  • 김남오;김형곤;김병철;김명수;오금곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1599-1602
    • /
    • 2002
  • $Zn_4SnSe_6$ and $Zn_4SnSe_6:Co^{2+}$ single crystals were by the chemical transport reaction method. They crystallized in the monoclinic structure. The direct energy band gaps of the $Zn_4SnSe_6$ and $Zn_4SnSe_6:Co^{2+}$ single crystals at 289K were found to be 2.146eV and 2.042eV. Optical absorption due to impurity in the $Zn_4SnSe_6:Co^{2+}$ single crystal was observed and described as originating from the electron transition between energy leveles of $Co^{2+}$ sited at $T_d$ symmetry point.

  • PDF

Photoluminescence of ZnGa2O4-xMx:Mn2+ (M=S, Se) Thin Films

  • Yi, Soung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권6호
    • /
    • pp.13-16
    • /
    • 2003
  • Mn-doped $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film phosphors have been grown using a pulsed laser deposition technique under various growth conditions. The structural characterization carr~ed out on a series of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) films grown on MgO(l00) substrates usmg Zn-rich ceramic targets. Oxygen pressure was varied from 50 to 200 mTorr and Zn/Ga ratio was the function of oxygen pressure. XRD patterns showed that the lattice constants of the $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film decrease with the substitution of sulfur and selenium for the oxygen in the $ZnGa_2O_4$. Measurements of photoluminescence (PL) properties of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin films have indicated that MgO(100) is one of the most promised substrates for the growth of high quality $ZnGa_2O_{4-x}M_{x}$:$Mn^{2+}$ (M=S, Se) thin films. In particular, the incorporation of Sulfur or Selenium into $ZnGa_2O_4$ lattice could induce a remarkable increase in the intensity of PL. The increasing of green emission intensity was observed with $ZnGa_2O_{3.925}Se_{0.075}:$Mn^{2+}$ and $ZnGa_2O_{3.925}S_{0.05}$:$Mn^{2+}$ films, whose brightness was increased by a factor of 3.1 and 1.4 in comparison with that of $ZnGa_{2}O_{4}$:$Mn^{2+}$ films, respectively. These phosphors may promise for application to the flat panel displays.

$ZnIn_2Se_4$$ZnIn_2Se_4$:Co 단결정의 광학적 특성 (Optical properties of $ZnIn_2Se$ and $ZnIn_2Se_4$:Co single crystals)

  • 최성휴;방태환;박복남
    • 한국진공학회지
    • /
    • 제6권2호
    • /
    • pp.129-135
    • /
    • 1997
  • $ZnIn_2Se_4$$ZnIn_2Se_4$:Co 단결정을 합성된 ingot를 사용하여 수직 Bridgman 방법으 로 성장시키고, 성장된 단결정의 결정구조와 광학적 특성을 연구하였다. 성장된 단결정은 공 간군이 142m인 사방정계구조를 가지고 있다. 기초 흡수단 영역에서의 광흡수 spectra측정으 로부터 이 단결정들은 간접전이형 에너지띠 구조를 갖고 있으며, 이 화합물 반도체의 직접 전이형 및 간접전이형 에너지 간격은 10K에서 300K로 측정 온도를 변화시킬 때 감소하였 다. 직접전이 energy gap의 온도계수는 $ZnIn_2Se_4$ 단결정의 경우는 $\alpha=3.57\times10^{-4}$eV/K, $\beta$ =519K이고, $ZnIn_2Se_4$:Co 단결정의 경우는 $\alpha=2.79\times10^{-4}$eV/K 및 $\beta$=421K로 각각 주어졌다. 또한 간접전이 energy gap의 온도계수는 ZnIn2Se4 단결정의 경우는 $\alpha=2.31\times10^{-4}$eV/K 및 $\beta$=285K이며, $ZnIn_2Se_4$:Co 단결정의 경우는 $\alpha=3.71\times10^{-4}$eV:K와 $\beta$=609K이였다. $ZnIn_2Se_4$:Co 단결정에서 cobalt 불순물에 기인한 6개의 불순물 광흡수 peak가 나타났다. 이 들 불순물 광흡수 peak들은 불순물로 첨가된 cobalt가 모체별정의 $T_d$ symmetry site에 $CO^{2+}$ion으로 위치하고, $CO^{2+}$ion의 분리된 전자에너지 준위들 사이의 전자전이에 의해 나타난 peak들로 해석된다.

  • PDF