• 제목/요약/키워드: $ZnIn_{2}S_{4}$

검색결과 1,088건 처리시간 0.038초

Hot Wall Epitaxy (HWE)법에 의해 성장된 $ZnIn_2S_4$ 에피레이어의 점결함 연구 (Study on point defect for $ZnIn_2S_4$ epilayers grown by Hot Wall Epitaxy)

  • 홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.141-142
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.9514eV - ($7.24\times10^{-4}$ eV/K)$T^2$/(T + 489 K). After the as-grown $ZnIn_2S_4$ single crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Zn}$, $V_s$, $Zn_{int}$, and $S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

  • PDF

Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 열처리 효과 (Growth and Effect of Thermal Annealing for ZnIn2S4 Single Crystal Thin Film by Hot Wall Epitaxy)

  • 박창선;홍광준
    • 한국재료학회지
    • /
    • 제18권6호
    • /
    • pp.318-325
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T^2/(T+489\;K)$. After the as-grown $ZnIn_2S_4$ single crystal thin films were annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

Thermal diffusion properties of Zn, Cd, S, and B at the interface of CuInGaSe2 solar cells

  • Yoon, Young-Gui;Choi, In-Hwan
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.52-58
    • /
    • 2013
  • Two different window-structured $CuInGaSe_2$(CIGS) solar cells, i.e., CIGS/thin-CdS/ZnO:B(sample A) and CIGS/very thin-CdS/Zn(S/O)/ZnO:B(sample B), were prepared, and the diffusivity of Zn, Cd, S, and B atoms, respectively, in the CIGS, ZnO or Zn(S/O) layer was estimated by a theoretical fit to experimental secondary ion mass spectrometer data. Diffusivities of Zn, Cd, S, and B atoms in CIGS were $2.0{\times}10^{-13}(1.5{\times}10^{-13})$, $4.6{\times}10^{-13}(4.4{\times}10^{-13})$, $1.6{\times}10^{-13}(1.8{\times}10^{-13})$, and $1.2{\times}10^{-12}cm^2/s$ at 423K, respectively, where the values in parentheses were obtained from sample B and the others from sample A. The diffusivity of the B atom in a Zn(S/O) of sample B was $2.1{\times}10^{-14}cm^2/sec$. Moreover, the diffusivities of Cd and S atoms diffusing back into ZnO(sample A) or Zn(S/O)(sample A) layers were extremely low at 423K, and the estimated diffusion coefficients were $2.2{\times}10^{-15}cm^2/s$ for Cd and $3.0{\times}10^{-15}cm^2/s$ for S.

Photoluminescence of ZnGa2O4-xMx:Mn2+ (M=S, Se) Thin Films

  • Yi, Soung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권6호
    • /
    • pp.13-16
    • /
    • 2003
  • Mn-doped $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film phosphors have been grown using a pulsed laser deposition technique under various growth conditions. The structural characterization carr~ed out on a series of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) films grown on MgO(l00) substrates usmg Zn-rich ceramic targets. Oxygen pressure was varied from 50 to 200 mTorr and Zn/Ga ratio was the function of oxygen pressure. XRD patterns showed that the lattice constants of the $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film decrease with the substitution of sulfur and selenium for the oxygen in the $ZnGa_2O_4$. Measurements of photoluminescence (PL) properties of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin films have indicated that MgO(100) is one of the most promised substrates for the growth of high quality $ZnGa_2O_{4-x}M_{x}$:$Mn^{2+}$ (M=S, Se) thin films. In particular, the incorporation of Sulfur or Selenium into $ZnGa_2O_4$ lattice could induce a remarkable increase in the intensity of PL. The increasing of green emission intensity was observed with $ZnGa_2O_{3.925}Se_{0.075}:$Mn^{2+}$ and $ZnGa_2O_{3.925}S_{0.05}$:$Mn^{2+}$ films, whose brightness was increased by a factor of 3.1 and 1.4 in comparison with that of $ZnGa_{2}O_{4}$:$Mn^{2+}$ films, respectively. These phosphors may promise for application to the flat panel displays.

다원화합물 반도체 $ZnGaInS_4:Er^{3+}$ 단결정의 광발광 특성 (Photoluminescence of Multinary-compound Semiconductor $ZnGaInS_4:Er^{3+}$ Single Crystals)

  • 김남오;김형곤;방태환;현승철;김덕태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.35-39
    • /
    • 2000
  • $ZnIn_2S_4$ and $ZnGaInS_4:Er^{3+}$ single crystals crystallized in the rhombohedral (hexagonal) space group $C_{3v}^5(R3m)$, with lattice constants $a=3.852{\AA},\;c=37.215{\AA}$ for $ZnIn_2S_4$, and $a=3.823{\AA}$, and $c=35.975{\AA}$ for $ZnIn_2S_4:Er^{3+}$. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of there compounds had a direct and indirect band gap, the direct and indirect energy gaps are found to be 2.778 and 2.682 eV for $ZnIn_2S_4$, and 2.725 and 2.651eV for $ZnIn_2S_4:Er^{3+}$ at 293 K. The photoluminescence spectra of $ZnIn_2S_4:Er^{3+}$ measured in the wavelength ranges of $500nm{\sim}900nm$ at 10 K. Eight sharp emission peaks due to $Er^{3+}$ ion are observed in the regions of $549.5{\sim}550.0nm,\;661.3{\sim}676.5nm$, and $811.1{\sim}834.1nm$, and $1528.2{\sim}1556.0nm$ in $CdGaInS_4:Er^{3+}$ single crystal. These PL peaks were attributed to the radiative transitions between the split electron energy levels of the $Er^{3+}$ ions occupied at $C_{2v}$, symmetry of the $ZnIn_2S_4$ single crystals host lattice.

  • PDF

Hot Wall Epitaxy (W)에 의한 ZnIn$_2$S$_4$ 단결정 박막 성장과 특성 (Growth and characterization of ZnIn$_2$S$_4$ single crystal thin film using Hot Wall Epitaxy method)

  • 윤석진;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.266-272
    • /
    • 2002
  • The stochiometric mixture of evaporating materials for the ZnIn$_2$S$_4$ single crystal thin film was prepared from horizontal furnace. To obtain the ZnIn$_2$S$_4$ single crystal thin film, ZnIn$_2$S$_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100) in the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 610 $^{\circ}C$ and 450 $^{\circ}C$, respectively and the growth rate of the ZnIn$_2$S$_4$ single crystal thin film was about 0.5 $\mu\textrm{m}$/hr. The crystalline structure of ZnIn$_2$S$_4$ single crystal thin film was investigated by photo1uminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of ZnIn$_2$S$_4$ single crystal thin film measured from Hall effect by van der Pauw method are 8.51${\times}$10$\^$17/ cm$\^$-3/, 291 $\textrm{cm}^2$/V$.$s at 293 $^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the ZnIn$_2$S$_4$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 0.0148 eV and 0.1678 eV at 10 $^{\circ}$K, respectively. From the photoluminescence measurement of ZnIn$_2$S$_4$ single crystal thin film, we observed free excition (E$\_$X/) typically observed only in high quality crystal and neutral donor bound exciton (D$^{\circ}$,X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9 meV and 26 meV, respectively. The activation energy of impurity measured by Haynes rule was 130 meV.

  • PDF

수계 내 ZnO 나노입자의 제거 및 생태독성 저감 (Removal of ZnO Nanoparticles in Aqueous Phase and Its Ecotoxicity Reduction)

  • 김현상;김영훈;김영희;이상구
    • 청정기술
    • /
    • 제22권2호
    • /
    • pp.89-95
    • /
    • 2016
  • 화장품이나 타이어에 주로 사용되는 ZnO 나노입자에 대한 나노위해성 문제가 대두되고 있다. 이에 본 연구에서는 수계상에 존재하는 ZnO 나노입자에 대한 제거 및 생물학적 독성평가를 실시하였다. 송사리(O. Latipes) 수정란을 이용한 단기 노출평가에서는 5 mg L−1에서는 일부 개체에서 기형이 관찰되었고, 10 mg L−1에서 성장지연에 의한 부화율저감이 관찰되었다. 이러한 결과를 바탕으로 ZnO 나노입자가 수생생물종에게 독성을 보인다는 것을 확인하고, 이를 제거하기 위한 방법인 침전법을 제안하였다. Na2S와 Na2HPO4를 이용하여 ZnO를 ZnS와 Zn3(PO4)2로 전환시켜 침전시켰으며, 이들의 침전에 의한 제거율은 거의 100%에 이르렀다. 또한 해당 침전물 대한 물벼룩(D. magna) 급성독성 평가에서 어떠한 독성 영향도 찾지 못하였다. 이는 ZnO의 황 및 인처리를 통한 변환이 독성 감소에 효과적이었음을 나타낸다.

Hot Wall Epitaxy (HWE)법에 의해 성장된 $ZnIn_2S_4$ 에피레이어의 전기적 특성 (Electrical properties for $ZnIn_2S_4$ epilayers grown by Hot Wall Epitaxy)

  • 이상열;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.143-144
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_2S_4$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_2S_4$ thin films measured with Hall effect by van der Pauw method are $8.51\times10^{17}$ electron/$cm^{-3}$, 291 $cm^2$/v-s at 293 K, respectively.

  • PDF

Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구 (Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy)

  • 홍광준
    • 센서학회지
    • /
    • 제16권6호
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

Hot Wall Epitaxy (HWE)에 의한 성장된 $ZnIn_2S_4$ 단결정 박막의 광전류 특성 (Opto-electric Properties of $ZnIn_2S_4$ single crystal thin film Grown by Hot Wall Epitaxy method)

  • 홍광준;이상열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.71-72
    • /
    • 2006
  • The stochiometric mixture of evaporating materials for the $ZnIn_2S_4$ single crystal thin film was prepared from horizontal furnace. To obtain the $ZnIn_2S_4$ single crystal thin film. $ZnIn_2S_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100). In the Hot Wall Epitaxy(HWE) system. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $ZnIn_2S_4$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 0.0148 eV and 0.1678 eV at $10_{\circ}K$, respectively.

  • PDF