• Title/Summary/Keyword: $Zn^{+2}/Fe^{+2}$ Ion

Search Result 156, Processing Time 0.034 seconds

Ion Exchange Separation of Minor Elements from Iron for the Analysis of S/G Sludge

  • Park, Kyoung-Kyun;Choi, Kwang-Soon;Kim, Jong-Goo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.309-310
    • /
    • 2005
  • Some minor elements(Al, B, Ba, Ca, Cd, Co, Cr, Cu, Gd, Mg, Mn, Mo, Nd, Ni, P, Pb, Si, Sn, Sr, Ti, V, Yb, Zn and Zr) in iron compounds such as the S/G sludge of a power plant were separated from iron by anionic and cationic exchange methods. If a ICP-AES or AAS determination follows this method, minor elements of more than 2 or 20 ppm of Fe can be determined with an error less than 20% except Sn and Mo. Alkaline elements were excluded from this study since they can be easily recovered from an anionic exchange. Application to real sludge samples is ongoing.

  • PDF

Establishment and application of standard-RSF for trace inorganic matter mass analysis using GD-MS (GD-MS 분석 장비를 활용한 극미량 무기물 질량 분석을 위한 표준RSF 구축 및 응용)

  • Jang, MinKyung;Yang, JaeYeol;Lee, JongHyeon;Yoon, JaeSik
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.240-246
    • /
    • 2018
  • The present study analyzed standard samples of three types of aluminum matrix certified reference materials (CRM) using GD-MS. Calibration curves were constructed for 13 elements (Mg, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sn, and Pb), with the slope representing the relative sensitivity factor (RSF). The x- and y-axes of the calibration curve represented ion beam ratio (IBR) and the authenticated value of the standard sample, respectively. In order to evaluate precision and linearity of the calibration curve, RSD and the coefficient of determination were calculated. Curve RSD for every element reflected high precision (within 10 %). For most elements, the coefficient of determination was ${\geq}0.99$, indicating excellent linearity. However, vanadium, nickel, and gallium curves exhibited relatively low linearity (0.90~0.95), likely due to their narrow concentration ranges. Standard RSF was calculated using the slope of the curve generated for three types of CRM. Despite vanadium, nickel, and gallium exhibiting low coefficients of determination, their standard RSF resembled that of the three types of CRM. Therefore, the RSF method may be used for element quantitation. Standard iron matrix samples were analyzed to verify the applicability of the aluminum matrix standard RSF, as well as to calculate the RSD-estimated error of the measured value relative to the actual standard value. Six elements (Al, Si, V, Cr, Mn, and Ni) exhibited an RSD of approximately 30 %, while the RSD of Cu was 77 %. In general, Cu isotopes are subject to interference: $^{63}Cu$ to $^{54}Fe^{2+}-^{36}Ar$ and $^{65}Cu$ to $^{56}Fe-Al^{3+}$ interference. Thus, the influence of these impurities may have contributed to the high RSD value observed for Cu. To reliably identify copper, the resolution should be set at ${\geq}8000$. However, high resolutions are inappropriate for analyzing trace elements, as it lowers ion permeability. In conclusion, quantitation of even relatively low amounts of six elements (Al, Si, V, Cr, Mn, and Ni) is possible using this method.

Ion Exchange Recovery of Rhenium and Its Determination in Aqueous Solutions by Diffuse Reflection Spectroscopy

  • Kalyakina, O.P.;Kononova, O.N.;Kachin, S.V.;Kholmogorov, A.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.79-84
    • /
    • 2004
  • The existing technological schemes for processing rhenium-containing raw materials involve the recovery of Re from solutions, which can be effectively achieved by anion exchange method. The application of anion exchange also allows to study rhenium state in aqueous solutions and to develop analytical control methods. The present work is focused on investigation of ion exchange equilibrium in the analytical system Re(VII)-HCl-$SnCl_2$-KSCN-anion exchanger by means of sorption-desorption method as well as by electron, IR- and diffuse reflection spectroscopy. It was shown that rhenium can be quantitatively recovered from this system. It is proposed to use the sorption-spectroscopic method for Re(VII) determination in aqueous solutions. The calibration curve is linear in the concentration range of 0.5-20.0 mg/L (sample volume is 25.0 mL) and the detection limit is 0.05 mg/L. The presence of Mo(VI), Cu(II), Fe(II, III), Ni(II), Zn(II) as well as $K^+,\;Na^+$ do not hinder the solid-phase determination of rhenium. Rhenium (VII) determination by diffuse reflection spectroscopy was carried out in model solutions as well as in samples of river-derived water and in solutions obtained after the dissolution of spent catalysts.

A Novel Metalloprotease from the Wild Basidiomycete Mushroom Lepista nuda

  • Wu, Y.Y.;Wang, H.X.;Ng, T.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.256-262
    • /
    • 2011
  • A 20.9-kDa metalloprotease was isolated from dried fruiting bodies of the wild basidiomycete mushroom Lepista nuda. The N-terminal amino acid sequence of the protease was seen to be ATFVLTAATNTLFTA, thus displaying no similarity with the sequences of previously reported metalloproteases. The protease was purified using a procedure that entailed ion-exchange chromatography on CM-Cellulose, Q-Sepharose, and Mono S, and FPLC-gel filtration on Superdex 75. The protease functioned at an optimum pH of 7.0 and an optimum temperature of $50^{\circ}C$. It was also noted that the protease demonstrated a proteolytic activity of 1,756 U/mg toward casein. The $K_m$ of the purified protease toward casein was 6.36 mg/ml at a pH of 7.0 and with a temperature of $37^{\circ}C$, whereas the $V_{max}$ was 9.11 ${\mu}g\;ml^{-1}\;min^{-1}$. The activity of the protease was adversely affected by EDTA-2Na, suggesting that it is a metalloprotease. PMSF, EGTA, aprotinin, and leupeptin exerted no striking inhibitory effect. The activity of the protease was enhanced by $Fe^{2+}$, but was curtailed by $Cd^{2+}$, $Cu^{2+}$, $Hg^{2+}$, $Pb^{2+}$, $Zn^{2+}$, and $Fe^{2+}$ ions. The protease also exhibited inhibitory activity against HIV-1 reverse transcriptase with an $IC_{50}$ value of 4.00 ${\mu}M$. The $IC_{50}$ values toward hepatoma Hep G2 and leukemia L1210 cells in vitro were 4.99 ${\mu}M$ and 3.67 ${\mu}M$, respectively.

Production Conditions and Characterization of ${\beta}$-Lactamase Inhibitor from Pseudomonas sp. X-8 (슈도모나스 sp. X-8의 베타락타마제 억제제의 생산 조건과 특성)

  • Kim, Kyoung-Ja;Kim, Tae-Sung
    • YAKHAK HOEJI
    • /
    • v.41 no.5
    • /
    • pp.658-665
    • /
    • 1997
  • Identification of a soil microorganism strain X-8, producer of ${\beta}$-lactamase inhibitor, based on its morphological, physiological, biochemical and chemotaxonomical characteristics was performed. The strain X-8 was identified as Pseudomonas sp. The beta-lactamase inhibitor produced by this strain was highly achieved in fermentation medium contained glucose 0.5%, urea 0.25%, $K_2HPO_4{\cdot}3H_2O\;0.5%,\;MgSO_4{\cdot}7H_2O\;0.5%,\;FeSO_4{\cdot}7H_2O\;0.01%,\;CuSO_4,\;ZnSO_4,\;MnSO_4\;0.02%$. The beta-lactamase inhibitor was not extracted by organic solvent such as n-butanol and ethyl acetate but remained in aqueous layer. The n-butanol extract showed antimicrobial activity against M. smegmatis. The ${\beta}$-lactamase inhibitor was stable at pH 7.0~8.0 and 4$^{\circ}C$ for 24h. The ${\beta}$-lactamase inhibitor was bound on ion exchanger Diaion WA-30 and HP-20 and eluted with 2N-$NH_4OH$ and acetone, respectively.

  • PDF

Environmental effects from Natural Waters Contaminated with Acid Mine Drainage in the Abandoned Backun Mine Area (백운 폐광산의 방치된 폐석으로 인한 주변 수계의 환경적 영향)

  • 전서령;정재일;김대현
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.325-337
    • /
    • 2002
  • We examined the contamination of stream water and stream sediments by heavy metal elements with respect to distance from the abandoned Backun Au-Ag-Cu mine. High contents of heavy metals (Pb, Zn, Cu, Cd, Mn, and Fe) and aluminum in the waters connected with mining and associated deposits (dumps, tailings) reduce water quality. In the mining area, Ca and SO$_4$ are predominant cation and anion. The mining water is Ca-SO$_4$ type and is enriched in heavy metals resulted from the weathering of sulfide minerals. This mine drainage water is weakly acid or neutral (pH; 6.5-7.1) because of neutralizing effect by other alkali and alkaline earth elements. The effluent from the mine adit is also weakly acid or neutral, and contains elevated concentrations of most elements due to reactions with ore and gangue minerals in the deposit. The concentration of ions in the Backun mining water is high in the mine adit drainage water and steeply decreased award to down stream. Buffering process can be reasonably considered as a partial natural control of pollution, since the ion concentration becomes lower and the pH value becomes neutralized. In order to evaluate mobility and bioavailability of metals, sequential extraction was used for stream sediments into five operationally defined groups: exchangeable, bound to carbonates, bound to FeMn oxide, bound to organic matter, and residual. The residual fraction was the most abundant pool for Cu(2l-92%), Zn(28-89%) and Pb(23-94%). Almost sediments are low concentrated with Cd(2.7-52.8 mg/kg) than any other elements. But Cd dominate with non stable fraction (68-97%). Upper stream sediments are contaminated with Pb, and down area sediments are enriched with Zn. It is indicate high mobility of Zn and Cd.

Separation of the Heavy Metals by macrocycles- mediated Emulsion Liquid Membrane Systems (거대고리 화합물을 매질로한 에멀존 액체막게에 의한 중금속이온의 분리)

  • 정오진
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.61-72
    • /
    • 1993
  • Result of this study indicate that two criteria must be met in order to have effective macrocycle-mediated transport in these emulsionsystem. First, one must effective extraction of the post transition metals, $Cd^{2+}$. $Pb^{2+}$ and $Hg^{2+}$ , into toluene membrane. The effectiveness of this extraction is greatest if log K values for the metal-macrocycle interaction is large. Second, the ratio of the log K values for the metal ion-receiving phase to the metal ion-macrocycle interaction must be large enough to ensure quantitative stripping of the metal ion at the toluene phase interface. Control of the first step can be obtained by appropriate selection of macrocycle donor atom, substituents, and cavity radius. The second step can be controlled by selecting the proper complexing agent for inclusion in the receiving phase. The order of the transport, when using the several $A^-$ species such as $SCN^-$, $1^-$, $Br^-$ and $Cl^-$ is the order of the changing degree of solvation for $A^-$ and the transport of the metals is also affected by the control of concentration for receiving species because of solubility-differences. In this study, we can seperate each single metal ion from the mixture of $Cd^{2+}$, $Pb^{2+}$, and $Hg^{2+}$ ions by using the toluene membranes controlled by optimized conditions. Transport of the single metal is also very good, and alkaline and alkaline earth metals as interferences ions did not affect the seperation of the metals in this macrocycle-liquid membrances but transition metal ions were partially affected as interferences for the post transition metal ions.

  • PDF

Purification and Characterization of the Extracellular Alginase Produced by Bacillus licheniformis AL-577 (알긴산 분해균 Bacillus licheniformis AL-577가 생산하는 균체외 효소의 정제 및 특성)

  • Uo, Meung-Hee;Joo, Dong-Sik;Cho, Soon-Yeong;Min, Tae-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.2
    • /
    • pp.231-237
    • /
    • 2006
  • The extracellular enzyme alginase produced by Bacillus licheniformis AL-577 was purified by ion chromatography on CM-Cellulose column, DEAE-Sepharose column, and followed by gel filtration on Sephadx G-100 column. The optimum pH and temperature for the activity of the purified enzyme were 6.0 and $35^{\circ}C$, respectively. The enzyme was stable at the pH range of $6.0\~9.0$ and at $20^{\circ}C$. The molecular weight of the enzyme was estimated to be about 25,500 daltons by SDS-polyacrylamide gel electrophoresis. NaCl was required for high activity of the enzyme. The enzyme was inhibited by $Ba^{2+},\;Co^{2+},\;Cu^{2+},\;Fe^{2+},\;Mg^{2+},\;Zn^{2+},\;NH_4^+$, EDTA, L-cysteine, and 2-mercaptoethanol, while stimulated by DTT, O-phenanthroline, $K^+$ and $Li^+$. This enzyme was proposed to be an alginase specifically degrading alginic acid.

Isolation of Microcystin-LR and Its Potential Function of Ionophore

  • Kim, Gilhoon;Han, Seungwon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.67-73
    • /
    • 2015
  • The microcystin is a cyclic heptapeptide from metabolites of cyanobacteria in the genera mycrocystis, anabaeba as a result of eutrophication. It has been known that microcystin-LR is a potent inhibitor of the catalytic subunits of protein phosphatase-1 (PP-1) as well as powerful tumor promoter. The active site of microcystin actually has two metal ions $Fe^{2+}/Zn^{2+}$ close to the nucleophilic portion of PP-1-microcystin complex. We report the isolation and purification of this microcystin-LR from cyanobacteria (blue-green algae) obtained from Daechung Dam in Chung-cheong Do, Korea. Microcystin-LR was extracted from solid-phase extraction (SPE) sample preparation using a CN cartridge. The cyanobacteria extract was purified to obtain microcystin-LR by HPLC method and identified by LC/MS. The detail structural studies that can elucidate the possible role of monovalent and divalent metal ions in PP-1-microcystin complexation were carried out by utilizing molecular dynamics. Conformational changes in metal binding for ligands were monitored by molecular dynamic computation and potential of mean force (PMF) using the method of the free energy perturbation. The microcystin-metal binding PMF simulation results exhibit that microcystin can have very stable binding free energy of -10.95 kcal/mol by adopting the $Mg^{2+}$ ion at broad geometrical distribution of $0.5{\sim}4.5{\AA}$, and show that the $K^+$ ion can form a stable metal complex rather than other monovalent alkali metal ions.

Isolation, Purification, and Characterization of a Thermostable Xylanase from a Novel Strain, Paenibacillus campinasensis G1-1

  • Zheng, Hongchen;liu, Yihan;Liu, Xiaoguang;Wang, Jianling;Han, Ying;Lu, Fuping
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.930-938
    • /
    • 2012
  • High levels of xylanase activity (143.98 IU/ml) produced by the newly isolated Paenibacillus campinasensis G1-1 were detected when it was cultivated in a synthetic medium. A thermostable xylanase, designated XynG1-1, from P. campinasensis G1-1 was purified to homogeneity by Octyl-Sepharose hydrophobic-interaction chromatography, Sephadex G75 gel-filter chromatography, and Q-Sepharose ion-exchange chromatography, consecutively. By multistep purification, the specific activity of XynG1-1 was up to 1,865.5 IU/mg with a 9.1-fold purification. The molecular mass of purified XynG1-1 was about 41.3 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Sequence analysis revealed that XynG1-1 containing 377 amino acids encoded by 1,134 bp genomic sequences of P. campinasensis G1-1 shared 96% homology with XylX from Paenibacillus campinasensis BL11 and 77%~78% homology with xylanases from Bacillus sp. YA-335 and Bacillus sp. 41M-1, respectively. The activity of XynG1-1 was stimulated by $Ca^{2+}$, $Ba^{2+}$, DTT, and ${\beta}$-mercaptoethanol, but was inhibited by $Ni^{2+}$, $Fe^{2+}$, $Fe^{3+}$, $Zn^{2+}$, SDS, and EDTA. The purified XynG1-1 displayed a greater affinity for birchwood xylan, with an optimal temperature of $60^{\circ}C$ and an optimal pH of 7.5. The fact that XynG1-1 is cellulose-free, thermostable (stability at high temperature of $70^{\circ}C{\sim}80^{\circ}C$), and active over a wide pH range (pH 5.0~9.0) suggests that the enzyme is potentially valuable for various industrial applications, especially for pulp bleaching pretreatment.