• Title/Summary/Keyword: $Zn^{+2}/Fe^{+2}$ Ion

Search Result 156, Processing Time 0.032 seconds

Synthesis of Amino-type Anion Exchanger from Acrylic Acid Grafted Polypropylene Nonwoven Fabric and Its Ion-Exchange Property (아크릴산 그라프트 폴리프로필렌 부직포로부터 아민형 음이온 교환체의 합성 및 이온교환특성(I))

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2006
  • The purpose of this study is the development of more effective filter-type polymer adsorbent for removal of anionic pollutants from wastewater. In order to synthesize the polymer adsorbent that possesses anionic exchangeable function, carboxyl(-COOH) group of PP-g-AA nonwoven fabric was converted into amine($-NH_2$) group by the chemical modification using diethylene triamine(DETA). FT-IR data indicate that amine group was introduced into PP-g-AA through amidation of grafted acrylic acid by reaction with DETA. The degree of amination increased with increase in the reaction time and temperature of the chemical modification process, and was significantly improved by the pre-swelling treatment of PP-g-AA with solvent and addition of metal chlorides as a catalyst in following order as $NH_4OH>MeOH{\geq}HCl{\geq}H_2O\;and\;AlCl_3>FeCl_3{\geq}SnCl_2{\gg}ZnCl_2{\geq}FeCl_2$, respectively. However, the addition of catalyst limited the reusability of DETA, hence was less useful from the viewpoint of cost effectiveness and waste management. The anion exchange capacity of the aminated PP-g-AA(PP-g-AA-Am) increased with increase in the degree of amination, but it reached maximum value at the degree of amination as about $50{\sim}60%$. The anion exchange capacity of PP-g-AA-Am was higher than those of commercial anion resins.

Behavior of Some Metallic Ions in the Process of Ginseng Extracts Preparation (인삼(人蔘) Extract 제조과정(製造過程)중 무기금속(無機金屬)이온의 동태(動態))

  • Cho, Yung-Hyun;Lee, Joung-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.133-134
    • /
    • 1983
  • Some metallic ions such as copper, manganese, iron, zinc and cadmium in ginseng extract, originated from white ginseng, were determined by atomic absorption spectrophotometry. The extracts were prepared with water, 35% ethanol, 50% ethanol or 75% ethanol solution followed by filtration or centrifugation. Greater amounts of metallic ions were found in the solution filtrated by filter paper (Toyo No. 5A) or by filter cloth than in that of centrifugation. The residual amount of metallic ions in the extract decreased with increasing concentration of ethanol. The percentages of each metallic ion in ginseng extracts on the basis of original amount of metallic ions were as follows: Cu, 10.4-31.9%, Fe,5.1-19.0%, Mn,3.0-12.2% Zn,7.4-12.0%, Cd,5.9-11.8%.

  • PDF

A Geochemical Study on Pyrophyllite Deposits and Andesitic Wall-Rocks in the Milyang Area, Kyeongnam Province (경남 밀양지역 납석광상과 안산암질 모암의 지구화학적 연구)

  • Oh, Dae-Gyun;Chon, Hyo-Taek;Min, Kyoung-Won
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.27-39
    • /
    • 1992
  • Several pyrophyllite deposits occur around the Milyang area where Cretaceous andesitic rocks and spatially related granitic rocks are widely distributed. Pyrophyllite ores consist mainly of pyrophyllite, and quartz with small amount of sericite, pyrite, dumortierite, and diaspore. The andesitic rocks and spatially related granitic rocks in this area suggest that they could be formed from the same series of a calc-alkaline magma series. The contents of $SiO_2$, $Al_2O_3$, LOI(loss on ignition) are enriched, and $K_2O$, $Na_2O$, CaO, MgO, $Fe_2O_3$ are depleted in altered andesitic rocks and ores. Enrichment of As, Cr, Sr, V, Sb and depletion of Ba, Cs, Ni, Rb, U, Y, Co, Sc, Zn are characteristic during mineralization. The pyrophyllite ores can be discriminated from the altered-and unaltered wall-rocks by an increasing of $(La/Lu)_{cn}$ from 4.18~22.13 to 8.98~55.05. In R-mode cluster analysis, Yb-Lu-Y, La-Ce-Hf-Th-U-Zr, $TiO_2-V-Al_2O_3$, Sm-Eu, $CaO-Na_2O-MnO$, Cu-Zn-Ag, $K_2O-Rb$ are closely correlated. In the discriminant analysis of multi-element data, $P_2O_5$, As, Cr and $Fe_2O_3$, Sr are helpful to identify the ores from the unaltered-and altered wall-rocks. In the factor analysis, the factors of alteration of andesitic rocks and ore mineralization were extracted. In the change of ions per unit volume, $SiO_2$, $Al^{3+}$ and LOI are enriched and $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Mn^{2+}$ and $Fe^{3+}$ are depleted during the alteration processes. The Milyang and the Sungjin pyrophyllite deposits could be mineralized by hydrothermal alteration in a geochemical condition of low activity ratio of alkaline ions to hydrogen ion with reference to spatially related granitic rocks.

  • PDF

Determination of Hg22+ Ions Using a Modified Glassy Carbon Electrode with 2,2':6':2''-Terpyridine

  • Kong, Young-Tae;Bae, Yun-Jung;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.346-350
    • /
    • 2002
  • A glassy carbon electrode (GCE) modified with 2,2':6':2”-terpyridine (2,2':6':2”-TPR) using a spin coating method was applied for the highly selective and sensitive analysis of a trace amount of $Hg_2^{2+}$ ions. Various experimental parameters, which influenced the response of the 2,2':6':2”-TPR modified electrode to $Hg_2^{2+}$ ions, were optimized. The linear sweep and differential pulse voltammograms for the 2,2':6':2”-TPR modified electrode deposited with Hg show a well-defined anodic peak at +0.65 V (vs. Ag|AgCl). After a 25 min preconcentration time in an $Hg_2^{2+}$ ion solution (0.1 M acetate buffer, pH 5.0), differential pulse voltammetry(DPV) with 2,2':6':2”-TPR modified electrode shows a linear response between $1.0\;{\times}\;10^{-6}M\;and\;2.0\;{\times}\;10^{-7}M$. The least-square treatment of these data produce an equation of I[${\mu}A$] = 0.031 + 0.005C with r = 0.980(n = 5). The detection limit of this electrode with linear sweep voltammetry and differential pulse anodic voltammetry were $2.0\;{\times}\;10^{-6}M\;and\;8.0\;{\times}\;10^{-8}M$, respectively. The presence of Pb, Fe, Cd, Ti, Ni, Co, Mg, Al, Mn, and Zn did not interfere in the analysis of the $Hg_2^{2+}$ ion. The 2,2':6':2”-TPR modified GCE has been successfully applied in determination trace amounts of Hg in a human urine sample.

Phosphorescent Azacrown Ether-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile

  • Li, Yinan;Yoon, Ung-Chan;Hyun, Myung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.122-126
    • /
    • 2011
  • A new phosphorescent cyclometalated heteroleptic iridium (III) complex with an ancillary ligand of 4-azacrownpicolinate was prepared and its metal ion selective phosphorescent chemosensing behavior was investigated. The new iridium (III) complex exhibits notable phosphorescence quenching for Hg2+ in aqueous 50% acetonitrile solution with respect to the selective phosphorescent detection of various metal ions including $Li^+,Na^+,K^+,Cs^+,Mg^{2+},Ca^{2+},Ba^{2+},Fe^{2+},Ni^{2+},Cu^{2+},Zn^{2+},Ag^+,Pb^{2+},Cd^{2+},Cr^{2+},Cr^{3+}$ and $Hg^{2+}$. The phosphorescence quenching for $Hg^{2+}$ increased linearly with increasing concentration of $Hg^{2+}$ in the range of $10{\mu}M-700{\mu}M$ even in the presence of other metal ions, except for $Cu^{2+}$. Consequently, the new iridium (III) complex has the potential to be utilized for the determination of parts per million levels of $Hg^{2+}$ in aqueous acetonitrile media.

A New Rhodamine B Derivative As a Colorimetric Chemosensor for Recognition of Copper(II) Ion

  • Tang, Lijun;Li, Fangfang;Liu, Minghui;Nandhakumar, Raju
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3212-3216
    • /
    • 2010
  • A new rhodamine-based sensor 1 was designed and synthesized by incorporating rhodamine B and benzimidazole moieties. Sensor 1 exhibits high selectivity and sensitivity to $Cu^{2+}$ in $CH_3CN$-water solution (HEPES buffer, pH = 7.0) with an obvious color change from colorless to pink. Other metal ions such as $Hg^{2+}$, $Ag^+$, $Pb^{2+}$, $Sr^{2+}$, $Ba^{2+}$, $Cd^{2+}$, $Ni^{2+}$, $Co^{2+}$, $Fe^{2+}$, $Mn^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Ce^{3+}$, $Mg^{2+}$, $K^+$ and $Na^+$ had no such color change and have no significant influence on $Cu^{2+}$ recognition process. The interaction of $Cu^{2+}$ and sensor 1 was proven to adopt a 1:1 binding stoichiometry and the recognition process is reversible.

Purification and Some Properties of Polyphenol Oxidase from Arrowroot (칡 뿌리의 Polyphenol Oxidase의 정제 및 성질에 관한 연구)

  • Oh, Man-Jin;Lee, Won-Yong;Lee, Ka-Soon
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.331-338
    • /
    • 1988
  • Acetone powder was prepared from raw arrowroots and the polyphenol oxidases of crude enzyme prepared from acetone powder were identified 5 isoenzymes by staining with catechol containing 0.05% phenylene diamine. The crude enzyme was passed through the columns of ion exchangers and gel permeation to fractionate the polyphenol oxidases. The main fraction of polyphenol oxidase appeared to be purified by 94-fold, with the activity yield of 45.4%, and its molecular weight was determined as 38,500 by poly acrylamide gel electrophoresis. The optimal pH and temperature for the enzyme activity were pH 7.5 and $50^{\circ}C$, respectively. The purified enzyme showed a high affinity for catechol and pyrogallol. The Michaelis constant for catechol was calculated to be 16.67mM according to the Lineweaver-Burk method. The enzyme activity was strongly inhibited by L-ascorbic acid, sodium bisulfite, EDTA and KCN, and totally inhibited, by $Fe^{3+}$ at a concentration of 1mM. However the enzyme was activated by $Zn^{2+}$ approximately 1.7 times at the same concentration.

  • PDF

Purification and Characterization of Mouse Liver Rhodanese

  • Lee, Chul-Young;Hwang, Jae-Hoon;Lee, Young-Seek;Cho, Key-Seung
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.170-176
    • /
    • 1995
  • Rhodanese from mouse liver was purified to near homogeneity by ammonium sulfate precipitation, CM-Sephadex ion exchange, hydroxyapatite and Sephacryl S-200-HR gel filtration chromatographies with a purification of 776 folds. The molecular weight was determined by Sephadex G-150 gel filtration and found to be 34.8 KDa. SOS-PAGE showed molecular weight 34 KDa and two identical subunits splitting by aging for 3 weeks at $-70^{\circ}C$ the molecular weight of which was 17 KDa. The optimal pH of enzyme activity was 9.4 and the pI value of the enzyme was 6.6. Rhodanese showed the optimal reaction temperature of $25^{\circ}C$ and near linear increasing pattern until 10 min. incubation. $K_m$ values of rhodanese for KCN and $Na_{2}S_{2}O_{3}$ as substrates were 12.5 mM and 8.3 mM, respectively. Rhodanese activity was inhibited by more than 70% at a concentration of 100 ${\mu}M$ of $Ni^{2+}$, $Zn^{2+}$, $Cd^{2+}$, $Hg^{2+}$ and $Cu^{2+}$. Other metal ions, such as $Mn^{2+}$, $Mg^{2-}$, $Ca^{2+}$, and $Fe^{2+}$ showed no effect on rhodanese activity.

  • PDF

Purification and Characterization of an Extracellular Protease from Bacillus pumilus CN8

  • Jin, Yong-Guo;Li, Hao-Li;Mal, Mei-Hu;Wang, Jun;Kim, Ha-Na;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.76-81
    • /
    • 2011
  • The protease produced by a Bacillus pumilus CN8 strain was purified by DEAE-Cellulose-52 ion exchange. It has a molecular weight of approximately 96,920 Dalton. In the present study, this protease showed strong activity over a broad range of pH (6.5-9.5) and temperature from $40^{\circ}C$ to $60^{\circ}C$, and the protease performed the maximal activity at pH 7.3 at $42^{\circ}C$. The effect of metal ions on protease activity showed that $K^+$ could slightly increase the protease activity, and other ions such as $Zn^{2+}$, $Fe^{2+}$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$ had no significant activation or inhibition to the protease (P> 0.05), and the more important is that $Cu^{2+}$, $Mn^{2+}$, $Sn^{2+}$, $Cd^{2+}$ had a strong inhibitory effect on the protease activity.

Characterization of the Starch Degradation Activity of recombinant glucoamylase from Extremophile Deinococcus geothermalis (극한성 미생물Deinococcus geothermalis 유래 재조합 글루코아밀레이즈의 전분 분해 활성 특징)

  • Jang, Seung-Won;Kwon, Deok-Ho;Park, Jae-Bum;Jung, Jong-Hyun;Ha, Suk-Jin
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.15-19
    • /
    • 2019
  • This work focused on characterization of the starch degradation activity from extremophile strain Deinococcus geothermalis. Glucoamylase gene from D. geothermalis was cloned and overexpressed by pET-21a vector using E. coli BL21 (DE3). In order to characterize starch degrading activity of recombinant glucoamylase, enzyme was purified using HisPur Ni-NTA column. The recombinant glucoamylase from D. geothermalis exhibited the optimum temperature as $45^{\circ}C$ for starch degradation activity. And highly acido-stable starch degrading activity was shown at pH 2. For further optimization of starch degrading activity with metal ion, various metal ions ($AgCl_2$, $HgCl_2$, $MnSO_4{\cdot}4H_2O$, $CoCl_2{\cdot}6H_2O$, $MgSO_4$, $ZnSO_4{\cdot}7H_2O$, $K_2SO_4$, $FeCl_2{\cdot}4H_2O$, NaCl, or $CuSO_4$) were added for enzyme reaction. As results, it was found that $FeCl_2{\cdot}4H_2O$ or $MnSO_4{\cdot}4H_2O$ addition resulted in 17% and 9% improved starch degrading activity, respectively. The recombinant glucoamylase from D. geothermalis might be used for simultaneous saccharification and fermentation (SSF) process at high acidic conditions.