• Title/Summary/Keyword: $Z_{PEF}-value$

Search Result 2, Processing Time 0.015 seconds

Sterilization of Yakju(Rice Wine) on a Serial Multiple Electrode Pulsed Electric Field Treatment System (직렬배열 다중전극 고전압 펄스 전기장 처리장치를 이용한 약주의 살균)

  • Mok, Chull-Kyoon;Lee, Sang-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.356-362
    • /
    • 2000
  • Yakju(rice wine) was sterilized with high-voltage square-wave pulses of $1\;{\mu}s$ duration at various electric field strengths and frequencies on a serial multiple electrode pulsed electric field(PEF) treatment system consisted of 7 electrodes connected in series. The initial microbial counts of Yakju were $1.88{\times}10^3{\sim}2.13{\times}10^4$ CFU/mL for total aerobes, $1.55{\times}10^3{\sim}2.85{\times}10^4$ CFU/mL for lactic acid bacteria and $1.72{\times}10^3{\sim}2.39{\times}10^4$ CFU/mL for yeasts. The sterilization of microorganisms in Yakju was a first order reaction and the sterilization effect increased as the field strength and the frequency increased. The $D_{Hz}-value$ and the $D_{PEF}-value$ decreased with the electric field strength. Yeast showed lower $D_{PEF}-value$ than bacteria. Lactic acid bacteria showed lower $D_{PEF}-value$ than general aerobic bacteria under the electric field strength below 30 kV/cm, but higher ones under that above 40 kV/cm. The $Z_{PEF}-value$ of general aerobic bacteria, lactic acid bacteria and yeast in Yakju were 39.4, 49.3 and 47.6 kV/cm, respectively. The PEF sterilization resulted in less changes in color and sensory properties than heat sterilization, and the PEF treated Yakju showed superior quality to the heat treated one. The commercial sterilization of Yakju was accomplished with 2-cycle treatment on the tested serial PEF treatment system.

  • PDF

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.