• Title/Summary/Keyword: $Y_2O_3-ZrO_2$

Search Result 1,707, Processing Time 0.025 seconds

Phase Relationships of Al2O3-Cr2O3-ZrO2-HfO2 System (Al2O3-Cr2O3-ZrO2-HfO2계의 상 (phase)관계에 관한 연구)

  • 장동석;조병곤;오근호;이종근
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 1987
  • The investigation includes phase equilibria of Al2O3-HfO2 Cr2O3-ZrO2, Cr2O3-HfO2, Al2O3-Cr2O3-ZrO2, Al2O3-Cr2O3-HfO2, Al2O3-ZrO2-HfO2, Cr2O3-ZrO2-HfO2, Al2O3-Cr2O3-ZrO2-HfO2. In the systems the solubility near the end members has been studied at 1500$^{\circ}C$ and 1600$^{\circ}C$, respectively. Selective Compositions were investigated in the area of the guarternary system where the phae relation was examined.

  • PDF

Properties of the System $ZrO_2$+3m/o $Y_2O_3$ Powder Prepared by Co-precipitation Method(I) : Stability of Tetragonal ZrO2 Powder (공침법으로 제조한 $ZrO_2$+3m/o $Y_2O_3$계 분체의 특성(I) : 정방정 Zirconia분체의 안정성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.361-368
    • /
    • 1990
  • The properties of the powder of ZrO2+3m/o Y2O3 system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide near by Zr(OH)4 structure showed more excellent crystallinity and lower formation temperature of tetragonal ZrO2. In the range of this study, cubic ZrO2 was not formed and stability of tetragonal ZrO2 prepared in the conditiion of pH 7 was most excellent. Average particle sizes and specific surface areas of tetragonal ZrO2 powders, prepared as calcining amorphous zirconium hydroxides at $600^{\circ}C$ for 1h, were 0.6-0.8${\mu}{\textrm}{m}$ and 45-70$m^2$/g, respectively.

  • PDF

Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

Phase Transformation of 2 Components(CaO-, $Y_2O_3$-, MgO-$ZrO_2$) and 3 Components(MgO-$ZrO_2-Al_2O_3)$ Zirconia by X-ray Diffraction and Raman Spectroscopy (X-선회절과 Raman 분광분석을 이용한 2성분계(CaO-, $Y_2O_3$-, MgO-$ZrO_2$) 및 3성분계(MgO-$ZrO_2-Al_2O_3)$ Zirconia의 상전이연구)

  • 은희태;황진명
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.145-156
    • /
    • 1997
  • ZrO2 phase transformations depending on the type and amount of dopants and the sintering temperatures were studied for the 2 components (CaO-, Y2O3-, MgO-ZrO2) and the 3 components(MgO-ZrO2-Al2O3)ZrO2 powder by X-ray diffraction and Raman spectroscopy. In the CaO- and Y2O3-ZrO2 systems, as the CaO and Y2O3 contents increased to 6~15mol% and 3~15mol% respectively, we were not able to identify between tetragonal and cubic in the X-ray diffraction patterns. On the other hand, all Raman modes shifted to lower wavenumbers, decreasing in intensity and the number of bands, markedly. These phenomena were caused by tetragonallongrightarrowcubic phase transformation and interpreted by the breakdown of the wave vector selection rule(k=0) and the structural disorder associated with the formation of oxygen sublattice which was caused by the substitution between Zr4+ ion and Ca2+ or Y3+ ion in ZrO2 matrix. The monoclinic to cubic phase transformation occurred in 10mol% MgO-ZrO2 system. As the Al2O3 content increased from 0 to 20mol% in the MgO-ZrO2-Al2O3 systems, cubic phase transformed to monoclinic phase, this is because the MgO didn't play a role in a stabilizer because of the formation of the spinel(MgAl2O4) by the reaction between MgO and Al2O3, Also, the ZrO2 phase transformation was explained by the change of it's lattice parameters depending on the type and amount of dopants. Namely, as the amount of dopant increased to 10~13mol%, the axial ra-tio c/a came close to unity with increasing the lattice parameter a and decreasing the lattice parameter c. At that time, the tetragonallongrightarrowcubic phase transformation occurred.

  • PDF

Fabrication of Al2O3/ZrO2Ceramics by the Polymerization Dispersion Process (ZrO2의 고분자화 분산법을 이용한 Al2O3/ZrO2요업체의 제조)

  • Cho, Myung-Je;Hwang, Kyu-Hong;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.284-288
    • /
    • 2004
  • To improve mechanical properties of $Al_2$O$_3$/ZrO$_2$composites have been controlled dispersion of ultra low size ZrO$_2$ particles in $Al_2$O$_3$ ceramics by polymeric precursor method (Pechini process). In case of coprecipitation or mechanical mixing of ZrO$_2$ powders with $Al_2$O$_3$, homogeneous dispersion and controlling the ZrO$_2$ size were relatively difficult due to high sintering temperature. So the polyesterization process of Zr/Y(NO$_3$)$_3$-citric acid solution in ethylene glycol with the commercial sub-micron sized o(-alumina powder (Sumitomo AES-11(0.4 ${\mu}{\textrm}{m}$)) was adopted in order to obtain homogeneous dispersion of ZrO$_2$ in A1203. By this partial polyesterization process, the homogeneous dispersion of relatively low sized ZrO$_2$in $Al_2$O$_3$/ZrO$_2$composites was achieved at 1450∼1$600^{\circ}C$ of sintering temperature range and their mechanical properties were measured.

Preparation and Characteristics of $Y_2O_3-CeO_2-ZrO_2$ Structural Ceramics : II. Mechanical Properties and Thermal Stability of Sintered Body ($Y_2O_3-CeO_2-ZrO_2$ 구조세라믹스의 제조 및 특성 : II. 소결체의 기계적 성질 및 열적 안정성)

  • 오혁상;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.102-108
    • /
    • 1997
  • ZrO2 powders stabilized with Y2O3 and CeO2 of various compositions were prepared by the coprecipitation of water-soluble ZrOCl2.8H2O, YCl3.6H2O and Ce(NO3)3.6H2O, and their compacts were pressurelessly sintered at 1400 and 150$0^{\circ}C$ for 2hrs in air. 2mol% Y2O3-ZrO3 showed the most superior strength (1003MPa) and microhardness (12.6GPa), while 10 mol%CeO2-ZrO2 had the hightest toughness (13.3 MPa.m1/2) after sintering at 140$0^{\circ}C$. The addition of Y2O3 into Y2O3-ZrO3 decreased mean grain size and increased strength and hardness but decrease toughness. On the other hand, the addition of CeO2 into Y2O3-ZrO2 enhanced the stability of tetragonal phase during low-temperature aging for a long time under hydrothermal atmosphere.

  • PDF

Dispersion of ZrO2 by Coprecipitation in Al2O3/ZrO2Ceramics (Al2O3/ZrO2요업체에서 공침에 의한 ZrO2입자의 분산)

  • Cho, Myung-Je;Choi, Jung-Lim;Park, Jung-Kwon;Hwang, Kyu-Hong;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.704-709
    • /
    • 2002
  • To improve the mechanical properties of $Al_2$O$_3$/ZrO$_2$composites, the homogeneous dispersion of ultra low size ZrO$_2$ particles in $Al_2$O$_3$ceramics have been controlled by coprecipitation method. In case of mechanical mixing of ZrO$_2$ powders with $Al_2$O$_3$, homogeneous dispersion and controlling the ZrO$_2$ size were relatively difficult due to high sintering temperature. So nanosized Zr hydroxide was coprecipitated from ZrOCl$_2$/Y(NO$_3$)$_3$ solution with commercial sub-micron sized $\alpha$-alumina (Sumitomo : AES-11(0.4 ${\mu}{\textrm}{m}$)) and high purity ultra low sized $\alpha$-alumina (Taimei Chemical (0.22 ${\mu}{\textrm}{m}$)) for low temperature sintering. By this partial coprecipitation method, relatively low sized ZrO$_2$ dispersion in $Al_2$O$_3$/ZrO$_2$ composites was achieved at 150$0^{\circ}C$-1$600^{\circ}C$ of sintering temperature range and their mechanical properties were measured.

Mechanical and Electrical Characteristics of $Al_2O_3-ZrO_2/A_2O_3$-TZP Structural Ceramics ($Al_2O_3-ZrO_2/A_2O_3$-TZP 세라믹스의 제조 및 기계적.전기적 특성)

  • 박재성;남효덕;이희영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.335-338
    • /
    • 1999
  • The effect of monoclinic $ZrO_2$(pure) and tetragonal $ZrO_2$ containing 5.35wt% $Y_2$$O_3$(Y-TZP) addition on the mechanical properties and thermal shock resistance of $Al_2$$O_3$ ceramic were investigated. The addition of $ZrO_2$(m) and Y-TZP increased sintering density of $Al_2$$O_3$. The vickers hardness increased with increasing the volume fraction of Y-TZP going through a maximum at 20wt%. The hardness of the specimens was found to be depend on the sintering density. With increasing the volume fraction of $ZrO_2$(m) and Y-TZP, the fracture toughness of the composite is increased. This result may be taken as evidence that toughening of ${Al_2}{O_3}$ can also be achieved by the transformation toughening and microcrack toughening of $ZrO_2$. The property of the& shock for ${Al_2}{O_3}$-$ZrO_2$ composites was improved by increasing the volume fraction of monoclinic $ZrO_2$(pure).Grain size increased with increasing the volume fraction of $ZrO_2$.

  • PDF

Microstructures and Densification Behaviors of $Al_2O_3-ZrO_2(ZTA)$ Composites Fabricated by a Surface-induced Coating (표면-유기 코팅에 의해 합성한 $Al_2O_3-ZrO_2(ZTA)$ 복합체의 미세구조와 소결거동)

  • 장현명;문종하;김광수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Al2O3-ZrO2(ZTA) composites were fabricated by a surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3. The fabricated composites were characterized by a uniform spatial distribution of the dispersed ZrO2 phase and by the absence of large ZrO2 grains throughout the Al2O3 matrix. The fracture toughness (KIC) and the bending strength of ZTA composites sintered at 1$600^{\circ}C$, respectively, were 5.6 MPa.m1/2 (for 20 wt% ZrO2) and 600 MPa (for 15wt% ZrO2). The fraction of tetragonal ZrO2 phase decreases as the total content of ZrO2, suggesting that both the stress-induced tlongrightarrowm transformation and the microcrack nucleation contribute to the toughening of the ZTA composites fabricated by the surface-induced coating.

  • PDF

Fabrication of $Y_2O_3-ZrO_2$ and $CaO-ZrO_2$ Fibers by Sol-Gel Process and Their Phase Characterization by Raman Microprobe (졸-겔법에 의한 $Y_2O_3-ZrO_2$계와 $CaO-ZrO_2$계 섬유의 제조 및 Raman Microprobe에 의한 상분석)

  • 황진명;은희태;권혁기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.104-114
    • /
    • 1994
  • ZrO2 fibers were fabricated by means of the Sol-Gel process using Zr(O-nC3H7)4-H2O-C2H5OH-HNO3 solution as a starting material. The optimum experimental parameters such as molar ratio of starting materials, concentration, temperature, viscosity, the amounts of stabilizer and the pH of solution were determined. The experimentally determined optimum variables which produce good ZrO2 fibers were used to manufacture the Y2O3-and CaO-ZrO2 fibers. The amounts of Y2O3 and CaO were varied within the range from 1.5~5 mol% and 3~15 mol% respectively. The phase transformation and microstructural evolution of the fabricated ZrO2 gel fibers were investigated after heat treatments up to 120$0^{\circ}C$ by X-ray diffraction, Raman microprobe spectroscopy, SEM, and specific surface area and pore volume measurements. From the analysis of X-ray diffraction and Raman spectra, the phase of heat treated Y2O3-and CaO partially stabilized ZrO2 gel fibers(Y2O3:2.5~3 mol%, CaO:6~9 mol%) were identified as a tetragonal phase up to 100$0^{\circ}C$. The maximum tensile strength of 2.5Y2O3-97.5ZrO2 and 6CaO-94ZrO2 (in mol%) fibers heat treated at 100$0^{\circ}C$ for 1 hr was found be 1.3~2 GPa with diameters of 10~20 ${\mu}{\textrm}{m}$.

  • PDF