• 제목/요약/키워드: $Y_2O_3$ powder

검색결과 2,384건 처리시간 0.028초

Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process

  • Lee, Hyun-Kwuon
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.574-579
    • /
    • 2013
  • The milling and particulate characteristics of Al alloy-$Al_2O_3$ powder mixtures for a reaction-bonded $Al_2O_3$ (RBAO) process were studied. A commercially available prealloyed Al powder with Zn, Mg, Cu and Cr alloying elements (7475 series) was mixed with a calcined sinter-active $Al_2O_3$ powder and then milled in centrifugal milling equipment for ~48 hrs. The Al alloy-$Al_2O_3$ powder mixtures after milling were characterized and evaluated in various ways to reveal their particulate characteristics during milling. The milling efficiency of the Al alloy increased with a longer milling time. Comminution of the Al alloy particles started with its elongation, showing a high aspect ratio. With a longer milling time, the elongated Al alloy particle changed in terms of its shape and size, becoming equiaxially fine particles. Regardless of the milling efficiency of the Al alloy particles, all of the Al alloy particles repeatedly experienced strong plastic deformation during milling, giving rise to higher density of surface defects, such as microcracks, and leading to higher residual microstress within the Al alloy particles. The chemical reactions, oxidation behavior and hydration behavior of the Al alloy particles and the hydrolysis characteristics of their reaction with the environment were also observed during the milling process and during the subsequent powder handling steps.

원료분말에 따른 Al2O3/CuO 분말혼합체의 수소환원 거동 및 미세조직 특성 (Hydrogen Reduction Behavior of Al2O3/CuO Powder Mixtures Prepared from Different Raw Powders and Their Microstructural Characteristics)

  • 오승탁;김정남;강계명
    • 한국재료학회지
    • /
    • 제14권10호
    • /
    • pp.696-700
    • /
    • 2004
  • The reduction behavior of $Al_{2}O_3/CuO$ powder mixtures, prepared from $Al_{2}O_3/CuO$ or $Al_{2}O_3/Cu-nitrate$, was investigated by using thermogravimetry and hygrometry. The powder characteristics were examined by BET, XRD and TEM. Also, the influence of powder characteristics on the microstructure and properties of hot-pressed composites was analyzed. The formation mechanism of nano-sized Cu dispersions was explained based on the powder characteristics and reduction kinetics of oxide powders. In addition, the dependence of the microstructure and mechanical properties of hot-pressed composites on powder characteristics is discussed in terms of the initial size and distribution of Cu particles. The practical implication of these results is that an optimum processing condition for the design of homogeneous microstructure and required properties can be established.

Influence of $Dy_2O_3$ and Sn on the Structure and Magnetic Properties of NdFeNB Magnets

  • Li, Liya;Yi, Jianhong;Peng, Yuan Dong
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1171-1172
    • /
    • 2006
  • Addition of 2.0wt%$Dy_2O_3$ or 0.3wt%Sn proved to be very effective in improving the permanent magnetic properties of NdFeNbB magnets. $Dy_2O_3$ additions result in the increase in the Hci and temperature dependence due to formation of (NdDy)-rich phase and grain refinement of $\Phi$ phase. This improvement of the coercivity stability of the magnets from the addition of Sn is attributed to the smoothing effect of the Sn addition at the grain boundaries. The magnetic properties, the temperature dependence and Curie temperature of NdFeNbB with $Dy_2O_3$ and Sn combined addition were found to be considerably improved.

  • PDF

입자 크기 분포에 따른 0.01Pb(Mg1/2W1/2)O3-0.41Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.23PbZrO3 후막의 미세구조 및 압전특성 (Piezoelectric properties and microstructure of 0.01Pb(Mg1/2W1/2)O3-0.41Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.23PbZrO3thick film with particle size distribution)

  • 문희규;송현철;김상종;최지원;강종윤;윤석진
    • 센서학회지
    • /
    • 제17권6호
    • /
    • pp.418-424
    • /
    • 2008
  • The PZT based piezoelectric thick films prepared by screen printing method have been mainly used as a functional material for MEMS applications due to their compatibility of MEMS process. However the screen printed thick films generally reveal poor electrical and mechanical properties because of their porous microstructure. To improve microstructure we mixed attrition milled powder with ball milled powder of 0.01Pb$(Mg_{1/2}W_{1/2})O_3$-0.41Pb$(Ni_{1/3}Nb_{2/3})O_3$-$0.35PbTiO_3$-$0.23PbZrO_3$+0.1 wt% ${Y_2}{O_3}$+1.5 wt% ZnO composition. By mixing 25 % of attrition milled powder and 75 % of ball milled powder, the broadest particle size distribution was obtained, leading to a dense thick film with crack-free microstructure and improved dielectric properties. The X-ray diffraction analysis revealed that the film was in wellcrystallized perovskite phase. The remanent polarization was increased from $13.7{\mu}C/cm^2$ to $23.3{\mu}C/cm^2$ at the addition of 25 % attrition milled powder.

Reaction-Bonded Al2O3 Ceramics Using Oxidation of Al Alloy Powder

  • Lee, Hyun-Kwuon
    • 한국재료학회지
    • /
    • 제24권5호
    • /
    • pp.236-242
    • /
    • 2014
  • Fabrication of reaction-bonded $Al_2O_3$ (RBAO) ceramics using Al-Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processing using Al powder. The influence on reaction-bonding and microstructure, as well as on physical and mechanical properties, of the particulate characteristics of the $Al_2O_3$-Al alloy powder mixtures after milling, was revealed. Variation of the particulate characteristics of this $Al_2O_3$-Al alloy powder mixture with milling time was reported previously. To start, the $Al_2O_3$-Al alloy powder mixture was milled, reaction-bonded, post-sintered, and characterized. During reaction-bonding of the $Al_2O_3$-Al alloy powder mixture compacts, oxidation of the Al alloy took place in two stages, that is, there was solid- and liquid-state oxidation of the Al alloy. The solid-state oxidation exhibited strong dependence on the density of surface defects on the Al-alloy particles formed during milling. Higher milling efficiency resulted in less participation of the Al alloy in reaction-bonding. This was because of its consumption by chemical reactions during milling, and subsequent powder handling, and could be rather harmful in the case of over-milling. In contrast to very little dependence of oxidation of the Al alloy on its particle size after milling, the relative density, microstructure, and flexural strength were strongly dependent on particle size after milling (i.e., on milling efficiency). The relative density and 4-point flexural strength of the RBAO ceramics in this study were ~98% and ~365 MPa, respectively, after post-sintering at $1,600^{\circ}C$.

자전연소법으로 제조한 Al2O3.SiC 입자로 보강된2024/(Al2O3.SiC)p 복합재료의 기계적특성 (Mechanical Properties of 2024/(Al2O3.SiC)p Composite Reinforced with Al2O3.SiC Particle Prepared by SHS Process)

  • 맹덕영
    • 한국분말재료학회지
    • /
    • 제7권1호
    • /
    • pp.35-41
    • /
    • 2000
  • Al2O3$.$SiC particle was prepared was prepared by the self-propagting high temperature sYthesis(SHS) process from a mixture of SiO2, Al and C powders, The fabricated Al2O3$.$SiC particle was applied to 2024Al/(Al2O3$.$SiC)pcomposite as a reinforcement. Aluminum matix composites were fabricares by the powder extrusion method using the synthesized Al2O3$.$SiC particle and commercial 2024Al powder. Theoptimum preparation conditions for Al2O3$.$SiC partticle by SHS process were described. The influence of the Al2O3$.$SiC voiume fraction on the mechanical was composite was also discussed. Despite adiabatic temperature was about 2367K, SHs reaction was completed not by itself, but by using pre-heating. Mean particle size of final particle synthesized was 0.73 ${\mu}$m and most of the particle was smaller than 2${\mu}$m. Elastic modulus and tensile strength of the composite increased with increase the volume fraction of reinforcement but, tensile strength depreciated at 30 vol% of reinforcement.

  • PDF

Bending Strength of Crack Healed $Si_3N_4/SiC$ Composite Ceramics by $SiO_2$ Colloidal

  • 박승원;김미경;안석환;남기우
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.166-168
    • /
    • 2006
  • $Si_3N_4/SiC$ composite ceramics was sintered in order to investigate their bending strength behavior after crack healing. $Y_2O_$ and $TiO_2$ power was added as sintering additives to enhance it's sintering property. A three-point bending specimen was cut out from sintered plates. About $100\;{\mu}m$ semi-circular surface cracks were made on the center of the tension surface of the three-point bending specimen using Vickers indenter. After the crack-healing processing from $500^{\circ}C$ to $1300^{\circ}C$, for 1 h, in air, the bending strength behavior of these crack-healed specimen coated with $SiO_2$ colloidal were determined systematically at room temperature. $Si_3N_4/SiC$ ceramics using additive powder ($Y_2O_3+TiO_2$) was superior to that of additive powder $Y_2O_3$. The additive powder $TiO_2$ exerted influence at growth of $Si_3N_4$. The optimum crack healing conditions coated $SiO_2$ colloidal were $1000^{\circ}C$ at $Si_3N_4/SiC$ using additive powder ($Y_2O_3+TiO_2$), and $1300^{\circ}C$ at $Si_3N_4/SiC$ using additive powder $Y_2O_3$.

  • PDF

고순도 초미립자 물라이트 분말 합성에 대한 연구 (I) (Studies on the Synthesis of High Purity and Fine Mullite Powder (I))

  • 김경용;김윤호;김병호;이동주
    • 한국세라믹학회지
    • /
    • 제26권5호
    • /
    • pp.682-690
    • /
    • 1989
  • Fine mullite powder was prepared by colloidal sol-gel route. Boehmite as a starting material of Al2O3 and silica sol or fumed silica as a starting material of SiO2 were used. $\alpha$-Al2O3, TiO2 and ZrO2 were used as seeding materials. The combination of boehmite and silica was found to be the stoichiometric mullite powder. Techniques for drying used were spray drying, freeze drying, reduced pressure evaporation and drying in a oven. The gelled powder was heated at 130$0^{\circ}C$ for 100min and was attrition-milled for 1~3hrs. The mullite powder obtained was composed of submicrometer, uniform and spherical particles with a narrow size distribution. The mullite powder was characterized by BET, SEM, XRD and IR spectroscopy.

  • PDF

용매 증발법에 의한 $Pb(Mg_{1/3}Nb_{2/3})O_3$ 분말 합성 및 유전 성질 (Synthesis of $Pb(Mg_{1/3}Nb_{2/3})O_3$ powder by Solvent Evaporation and its Dielectric Property)

  • 이종필;이종국;강상구;김환
    • 한국세라믹학회지
    • /
    • 제33권1호
    • /
    • pp.17-24
    • /
    • 1996
  • Pb(Mg1/3Nb2/3)O3 powder with high purity chemical homogeniety and reactivity was prepared by solvent eva-poration of common solution. The common solution was fabricated using a Pb(NO3)2 Mg(NO)3 and NB solution which was prepared by dissolving NbC in H2O2 acquous solution. In precusor powder prepared by solvent evaporation method the synthetic temperature of Pb(Mg1/3 Nb2/3)O3 phase was lowered. And the formation of homogeneous Pb(Mg1/3Nb2/3)O3 phase was enhanced but the formation of pyrochlore phase was reduced. The dielectric constant of PMN ceramics from the synthesized powder was found to increase with both sintering temperature and excess MgO and subsequent analysis of the microstructures confirmed that this was due to an increase in grain size. The grain size dependence is explained as a consequence of low-permittivity grain boundaries.

  • PDF

저수축 반응소결 알루미나 세라믹스의 제조 (Fabrication of Low-Shrinkage Reaction-Bonded Alumina Ceramics)

  • 박정현;이현권;정경원;염강섭
    • 한국세라믹학회지
    • /
    • 제29권6호
    • /
    • pp.419-430
    • /
    • 1992
  • Fabrication possibility of low-shrinkage alumina without oxidation and wetting agent was presented on the basis of observation about oxidation behavior, microstructure and physical characteristics of such reaction agents free Al2O3-Al system. The composition less than Al 10w/o where Al can act as a sintering agent for Al2O3 was excluded. Under the condition of present experiments oxidation of Al2O3-Al system was dependent not on holding time but mainly on oxidation temperature. In thes case of Al powder not comminuted effectively during powder mixing of Al2O3-Al, columnar structure which would act as a hindrance to the densification during sintering developed more during oxidation with higher Al contents, and which made the fabrication of low-shrinkage Al2O3 ceramics impossible. If Al powder was comminuted effectively due to co-mixed Al2O3 characteristics, densification was improved because of no columnar structure and made the fabrication of sintered body with -2.7% dimensional change and 81% relative density possible. As a result, it is possible to fabricate dense low-shrinkage Al2O3 ceramics without oxidation and wetting agent under conditions such as smaller particle size of Al, Al contents below 50v/o, higher green density of Al2O3-Al compact and the use of Al2O3 powder used for high-density ceramics.

  • PDF