• Title/Summary/Keyword: $W_{3}$ powders

Search Result 211, Processing Time 0.026 seconds

Effects of Cattail Pollen Powders on the Rheology of Dough and Processing Adaptability of White Pan Bread (부들화분을 첨가한 밀가루 반죽의 물성과 제빵 적성)

  • Lee, Bung-Chan;Joung, Yong-Myeon;Hwang, Seong-Yun;Lee, Jong-Hwa;Oh, Man-Jin
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.525-533
    • /
    • 2009
  • To explore cattail pollen powder as a functional food ingredient, we analyzed the general components of pollen powder, tested changes in the physical properties of dough containing the powder, and investigated the process ability of powder-containing dough in bread making by adding 3%, 6%, or 9% by weight of pollen powder to wheat flour. Cattail pollen powder consisted of (all w/w) 12.7-13.2% water, 15.7-17.8% crude protein, 1.3% crude fat, 7.5-7.7% free sugar, 14.7-18.6% crude fiber, 3.4-4.9% pollen, and 49.7-55.9% soluble nitrogen-free extract (NFE). Analysis of the physical properties of dough mixed with pollen powder showed that as more pollen powder was added, the absorption rate increased, but dough stability decreased. With increasing levels of cattail pollen powder, the falling number decreased, and amylase activity increased. Fermentability was highest in dough made with 3% by weight of pollen powder, and the bread product made from such dough had the greatest volume. As more cattail pollen powder was added, the moisture activity in dough tended to decrease to a greater extent than seen in control dough, and this tendency increased with time. We found that longer storage periods were associated with greater hardness and springiness, which indicated degradation in product quality. Therefore, it is suggested that bread products containing cattail pollen powder should be consumed within 3 days of preparation. In a taste survey, bread baked with 3% (w/w) cattail pollen powder scored highest in all questionnaire items.

Gas Sensing Characteristics of Ru doped-WO3 Micro Gas Sensors (루테늄이 첨가된 텅스텐 산화물을 이용한 마이크로 가스 센서의 암모니아 가스 감지 특성)

  • Lee, Hoi Jung;Yoon, Jin Ho;Kim, Bum Joon;Jang, Hyun Duck;Kim, Jung Sik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.395-399
    • /
    • 2011
  • In this study, micro gas sensors for ammonia gas were prepared by adopting MEMS technology and using a sol-gel process. Three types of sensors were prepared via different synthesis routes starting with W sol and Ru sol mixture. This mixture was deposited on a MEMS platform and the platform was subsegueny heated to a temperature of $350^{\circ}C$. The topography and crystal structure of the sensing film were studied using FE-SEM and XRD. The response of the gas sensor to $NH_3$ gas was examined at various operating temperatures and gas concentrations. The sensor response increased almost linearly with gas concentration and the best sensing response was obtained at $333^{\circ}C$ for 5.0 ppm $NH_3$ for the specimen prepared by coating $WO_3$ powders with the Ru sol mixture.

COMPOSITION OF SUPERCONDUCTING YBCO THIN FILMS WITH RF REACTIVE SPUTTERING CONDITIONS

  • Kim, H.H.;Kim, S.;Shin, S.H.;Park, J.I.;Park, K.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.829-833
    • /
    • 1996
  • Superconducting YBaCuO thin films were deposited on MgO (100) single crystal substrate by rf reactive sputtering method. Sputtering target was prepared by mixing the original powders of $Y_2O_3$, $BaCO_3$, and CuO at $830^{\circ}C$, and its composition was $YBa_2Cu_{3.3}O_x$ adding the excess CuO to compensate for the loss of Cu in the deposition process. The sputtering conditions for a high quality of YBCO thin film were: substrate temperature of 13$0^{\circ}C$; gas pressure of 10 mTorr; gas mixture ($O_2$: Ar =10: 90); distance of 2.5 inch; and rf power density of 4.87 W /$\textrm{cm}^2$. The deposition rate was 2.4~2.6 nm/min. From the RBS results, it was found that Cu and Ba contents in thin films decreased with the increase of substrate temperature. The increase of gas pressure resulted in significant deficiency of Ba elements.

  • PDF

Characterization of electrophoretically deposited low voltage phosphors mixed with $In_2O_3$ conducting powders for field emission display

  • Seo, D.S.;Song, B.G.;Kim, C.O.;Hong, J.P.;Jin, Y.W.;Cha, S.N.;Lee, N.S.;Jung, J.E.;Kim, J.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.145-146
    • /
    • 2000
  • Primary emphasis was placed on the electrophoretic deposition of low voltage phosphor to indium-tin oxide-coated glass for the application of field emission display. The phosphor deposited by various parameters, such as deposition time and applied voltages was examined in detail. In addition, a comparison was made by analyzing luminance properties of the phosphor mixed with and without conducting $In_2O_3$ powder of less than 1um size. The measurement was performed as a function of $In_2O_3$ concentration from 3% to 15% by weight. The enhanced impact of indium powder mixing on the phosphor was clearly demonstrated by aging performance curve at 1000V excitation voltages with a current density of $1\;mA/cm^2$

  • PDF

Microwave Absorbing Characteristics of Silicon carbide-ferrite surface Films Produced by Plasma-spraying(I) (플라즈마 용사방식에 의해 형성된 탄화규소-페라이트 표면층의 마이크로파 흡수특성(I))

  • Shin, Dong-Chan;Son, Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.6
    • /
    • pp.580-588
    • /
    • 1992
  • Plasma-spraying was conducted to produced the microwave absorbing surface films on the alumi-num-alloy used for the fuselage to protect the aircraft against the RADAR detction. The surface films were produced by plasma-splaying the mecharucally mixed composite powders of the silicon carblde and Ni-Zn ferrite. This M /W absorbers were designed experimentally and fabricated trialty, as a result of which the rolative frequency bandwidth of 7.6 to 8.4% were obtained under the tolerance limits of the re-flection coefficients lower than -6dB(absorption ratio 75%), and the maximum absorption thickness becomes 0.5 to 0.5.imm, which Is much thinner than that of the conventional ones.

  • PDF

Effect of Reduction Temperature on the Microstructure and Thermoelectric Properties of TAGS-85 Compounds

  • Madavali, Babu;Han, Seung-Tek;Shin, Dong-Won;Hong, Soon-Jik;Lee, Kap-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.438-444
    • /
    • 2017
  • In this work, the effects of hydrogen reduction on the microstructure and thermoelectric properties of $(GeTe)_{0.85}(AgSbTe_2)_{0.15}$ (TAGS-85) were studied by a combination of gas atomization and spark plasma sintering. The crystal structure and microstructure of TAGS-85 were characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The oxygen content of both powders and bulk samples were found to decrease with increasing reduction temperature. The grain size gradually increased with increasing reduction temperature due to adhesion of fine grains in a temperature range of 350 to $450^{\circ}C$. The electrical resistivity was found to increase with reduction temperature due to a decrease in carrier concentration. The Seebeck coefficient decreased with increasing reduction temperature and was in good agreement with the carrier concentration and carrier mobility. The maximum power factor, $3.3{\times}10^{-3}W/mK^2$, was measured for the non-reduction bulk TAGS-85 at $450^{\circ}C$.

The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature (3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성)

  • Janchivdorj, Khulgadai;So, Hyoung-Seok;Yi, Je-Bang;So, Seung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

Effect of Storage Conditions, Rice, Cooker and Oil Types on the Changes of Resistant Starch Contents of Cooked Rice (저장조건, 쌀, 조리기구와 유지 종류가 밥의 저항전분 함량 변화에 미치는 영향)

  • Ren, Chuanshun;Kim, Ji Myoung;Park, Sara;Jeong, On Bit;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.32 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The changes of resistant starch (RS) contents of cooked rice with soybean and coconut oils under different storage conditions were investigated and RS contents were compared between the rice and cooker types. The japonica (Hopyeong) and the indica (Thailand) type rice were cooked (washed rice: water = 100: 130) using an electric cooker and a saucepan. The coconut oil and soybean oil (3%, based on rice, w/w) were added into cooking water before heating. The RS contents of freeze-dried cooked rice powders (newly-cooked rice, stored for 12 h in the refrigerator, microwave heating after storage for 12 h in the refrigerator) were measured by the AOAC method. The RS contents of cooked rice using a saucepan were higher than those using an electric cooker. The indica type cooked rice had a higher RS content than the japonica type cooked rice, regardless of storage conditions. However, addition of oil before cooking rice resulted in increased RS content on storage in the refrigerator. The highest RS content of the cooked indica type rice with soybean oil ($5.89{\pm}0.22%$) that was stored for 12 h in the refrigerator was analyzed. The results suggested that the cooked rice formed retrograded (RS3) and amylose-lipid complex (RS5) type RS; furthermore, the RS content is affected by storage conditions, rice, cooker and oil types.

Preparation of Water Soluble Powder of Propolis and the Quality Changes of its Bread during Storage (Propolis 수용성분말 제조 및 이를 첨가한 빵의 저장 중 품질변화)

  • Song, Hyo-Nam
    • Korean journal of food and cookery science
    • /
    • v.22 no.6 s.96
    • /
    • pp.905-913
    • /
    • 2006
  • The properties of water soluble powder of propolis(WSP), made with different levels(0, 20, 40, 60, 80%) of ethanol extract of propolis(EEP) and hydrocolloid were investigated, along with the quality changes of its bread after 7 days' of storage at $30^{\circ}C$ The yield of WSP containing 40% EEP treated at $160^{\circ}C$ was the highest at 59.3% and the brown color of all the powders tended to be darkened with increasing EEP content. The turbidity of WSP treated at higher temperature was decreased in its aqueous solution (10%, w/w), and this was considered to be due to the presence of minute nonsoluble particles. Antioxidative activities determined by DPPH(1,1-diphenyl-2-picrylhydrazyl) were the lowest in WSP treated at $140^{\circ}C$, while those of the WSP samples prepared at 160 and $180^{\circ}C$ were as high as that of WSP containing more than 40% EEP, regardless of EEP concentration. The propolis breads with added WSP made at $160^{\circ}C$ were selected as the most desirable powder for subsequent study. Bread with WSP40 was the heaviest while the volume loss of WSP80 was the greast after baking. The moisture contents of the propolis bread were drastically decreased until 3 days' of storage, but it was thought that WSP might be ineffective for the prevention of moisture loss. The pH of breads without EEP was decreased after 3 days' of storage, while that of the WSP breads remained almost unchanged until 5 days' of storage. Total bacterial counts also exhibited decay levels during the storage. In conclusion, water soluble powder of propolis is useful as a natural antioxidative and antibacterial material in various types of food.

Mechanical Property Improvement of the H13 Tool Steel Sculptures Built by Metal 3D Printing Process via Optimum Conditions (금속 3D 프린팅 공정 최적화를 통한 H13 공구강 조형체의 기계적 특성 향상)

  • Yun, Jaecheol;Choe, Jungho;Lee, Haengna;Kim, Ki-Bong;Yang, Sangsun;Yang, Dong-Yeol;Kim, Yong-Jin;Lee, Chang-Woo;Yu, Ji-Hun
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.195-201
    • /
    • 2017
  • In this study, H13 tool steel sculptures are built by a metal 3D printing process at various laser scan speeds. The properties of commercial H13 tool steel powders are confirmed for the metal 3D printing process used: powder bed fusion (PBF), which is a selective laser melting (SLM) process. Commercial H13 powder has an excellent flowability of 16.68 s/50 g with a Hausner ratio of 1.25 and a density of $7.68g/cm^3$. The sculptures are built with dimensions of $10{\times}10{\times}10mm^3$ in size using commercial H13 tool steel powder. The density measured by the Archimedes method is $7.64g/cm^3$, similar to the powder density of $7.68g/cm^3$. The hardness is measured by Rockwell hardness equipment 5 times to obtain a mean value of 54.28 HRC. The optimum process conditions in order to build the sculptures are a laser power of 90 W, a layer thickness of $25{\mu}m$, an overlap of 30%, and a laser scan speed of 200 mm/s.