• Title/Summary/Keyword: $WO_3$thick film

Search Result 34, Processing Time 0.023 seconds

Characteristics of a Metal-loaded SnO2/WO3 Thick Film Gas Sensor for Detecting Acetaldehyde Gas

  • Jun, Jae-Mok;Park, Young-Ho;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1865-1872
    • /
    • 2011
  • This study investigates the sensitivity of a gas sensor to volatile organic compounds (VOCs) at various operating temperatures and catalysts. Nano-sized powdered $WO_3$ prepared by sol-gel and chemical precipitation methods was mixed with various metal oxides. Next, transition metals (Pt, Ru, Pd, and In) were doped on the surface of the mixture. Metal-$WO_3$ thick films were prepared using the screen-printing method. The physical and chemical properties of the films were studied by SEM/EDS, XRD, and BET techniques. The measured sensitivity to VOCs is defined as the ratio ($R_a/R_g$) of resistance ($R_{air}$) of $WO_3$ film in the air to resistance ($R_{gas}$) of $WO_3$ film in a VOCs test gas. The sensitivity and selectivity of the films were tested with various VOCs such as acetaldehyde, formaldehyde, methyl alcohol, and BTEX. The thick $WO_3$ film containing 1 wt % of Ru and 5 wt % of $SnO_2$ showed the best sensitivity and selectivity to acetaldehyde gas at an operating temperature of 300 $^{\circ}C$.

Characteristics of CuO doped WO3-SnO2 Thick Film Gas Sensors (CuO가 첨가된 WO3-SnO2 후막 가스센서 특성 연구)

  • Lee, Don-Kyu;Shin, Deuck-Jin;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.956-960
    • /
    • 2010
  • CuO doped $WO_3-SnO_2$ thick film gas sensors were fabricated by screen printing method on alumina substrates and heat-treated at $350^{\circ}C$ in air. The effects of mixing ratio of $WO_3$ with $SnO_2$ on the structural and morphological properties of $WO_3-SnO_2$ were investigated X-ray diffraction and Scanning Electron Microscope. The structural properties of the $WO_3-SnO_2$:CuO thick film by XRD showed that the monoclinic of $WO_3$ and the tetragonal of $SnO_2$ phase were mixed. Nano CuO was coated on the $WO_3-SnO_2$ surface and then the surface of $WO_3$ was coated with $SnO_2$ particles with $1\sim1.5{\mu}m$ in diameters, as confirmed form the SEM image. The sensitivity of the $WO_3-SnO_2$:CuO sensor to 2000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas for the various ratio of $WO_3$ and $SnO_2$ was investigated. The 4 wt% CuO doped $WO_3-SnO_2$(75:25) tkick films showed the highest sensitivity to $CO_2$ gas and $H_2S$ gas.

Characteristics of CuO doped WO3 Thick Film for Gas Sensors (CuO가 첨가된 WO3 후막 가스센서 특성 연구)

  • Yu, Il;Lee, Don-Kyu;Shin, Deuck-Jin;Yu, Yoon-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1621-1625
    • /
    • 2010
  • Recently, due to increase in the usage of toxic gas and inflammability gas, the ability to monitor and precisely measurement of these gases is crucial in preventing the occurrence of various accidents. CuO doped and undoped $WO_3$ thick films gas sensors were prepared using screen-printing method on alumina substrates. A structural properties of $WO_3$:CuO thick films had monoclinic phase and triclinic phase of $WO_3$ together. Sensitivity of $WO_3$:CuO sensor at 2000 ppm of $CO_2$ gas and 50 ppm of $H_2S$ gas was investigated. 4 wt% Cu doped $WO_3$ thick films had the highest sensitivity of $CO_2$ gas and $H_2S$ gas.

Gas sensing characteristics of $TiO_{2}/WO_{3}$ thick film for hydrocarbon gas (후막형 $TiO_{2}/WO_{3}$ 소자의 탄화수소계가스에 대한 감도 특성)

  • Chang, Dong-Hyuck;Choi, Dong-Han
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.21-27
    • /
    • 1996
  • Thick film $TiO_{2}/WO_{3}$ butane gas sensors were fabricated by the screen printing method and their gas sensing characteristics were investigated. The sensitivity of $TiO_{2}/WO_{3}$ thick film was higher than that of pure $WO_{3}$ film to butane. The $WO_{3}$ film with 2wt.% $TiO_{2}$ showed the highest sensitivity to butane. And the optimum heat treatment temperature was $650^{\circ}C$. That film showed the highest sensitivity to butane at the operating temperature of $350^{\circ}C$. The sensitivity of the film to 20000ppm butane in air was 80% at the operating temperature of $350^{\circ}C$.

  • PDF

Gas Sensing Characteristics of WO3:In2O3 Prepared by Ball-mill Time (볼밀시간에 의한 WO3:In2O3 가스센서의 감응특성)

  • Shin, Deuck-Jin;Yu, Yun-Sik;Park, Sung-Hyun;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.299-302
    • /
    • 2011
  • [ $WO_3$ ]powders were ball-milled with an alumina ball for 0-72 hours. $In_2O_3$ doped $WO_3$ was prepared by soaking ball-milled $WO_3$ in an $InCl_3$ solution. The mixed powder was annealed at $700^{\circ}C$ for 30 min in an air atmosphere. A paste for screen-printing the thick film was prepared by mixing the $WO_3$:In2O3 powders with ${\alpha}$-terpinol and glycerol. $In_2O_3$ doped $WO_3$ thick films were fabricated into a gas sensor by a screen-printing method on alumina substrates. The structural properties of the $WO_3$:$InO_3$ thick films were a monoclinic phase with a (002) dominant orientation. The particle size of the $WO_3$:$InO_3$ decreased with the ball-milling time. The sensing characteristics of the $In_2O_3$ doped $WO_3$ were investigated by measuring the electrical resistance of each sensor in the test-box. The highest sensitivity to 5 ppm $CH_4$ gas and 5 ppm $CH_3CH_2CH_3$ gas was observed in the ball-milled $WO_3$:$InO_3$ gas sensors at 48 hours. The response time of $WO_3$:$In_2O_3$ gas sensors was 7 seconds and recovery time was 9 seconds for the methane gas.

NO2 Sensing Characteristics of WO3 Thick Film Sensors Using Nanosized WO3 Powders Prepared by Sol-Precipitation Process (Sol-Precipitation법으로 제조된 WO3 나노분말을 이용한 후막 센서의 NO2 감지 특성)

  • Ryu, Hyun-Wook;Park, Kyung-Hee;Kim, In-Chun;Hong, Kwang-Joon;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.930-934
    • /
    • 2002
  • Nanosized $WO_3$ powders were synthesized by the sol-precipitation process using $WCl_{6}$ as the starting material, ethanol as a solvent and $NH_4$OH solution as a precipitant, followed by a washing-drying treatment and calcination. The effects on the powder crystallinity and microstructure of calcination temperature were investigated with XRD and FE-SEM. The $WO_3$ powders calcined at $500^{\circ}C$ and $700^{\circ}C$ showed good crystallinity and their mean particle size was 30nm and 70nm, respectively. These powders were used for the preparation of pastes which were printed as thick films on alumina substrates with comb-type Pt electrodes. The particle size strongly influenced the $NO_2$ gas sensing property of the thick films. A significant reduction in the $NO_2$ sensitivity was observed for the film prepared from larger particle size, having thus a larger grain size. For the film having a smaller grain size, on the other hand, the higher $NO_2$ sensitivity was observed and the sensitivity increased with $NO_2$ concentration.

Fabrication and NOx Sensing Characteristics of $WO_{3}$ Based Thick Film Devices Doped with $TiO_{2}$ and Noble Metals ($TiO_{2}$와 귀금속을 첨가한 $WO_{3}$ 후막 센서의 제조 및 NOx 감응 특성)

  • Lee, Dae-Sik;Han, Sang-Do;Son, Young-Mok;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.274-279
    • /
    • 1997
  • NOx sensors using tungsten oxide films as a base material were prepared and their electrical and sensing characteristics have been investigated. The $WO_{3}$ thick films doped with $SnO_{2}$ or $TiO_{2}$ showed higher sensitivity and better sorption characteristics to NOx gas than the pure $WO_{3}$ films material in air at operating temperature of $400^{\circ}C$. By addition of noble catalysts, such as Ru or Au, to the $TiO_{2}-WO_{3}$ thick films, their sensitivity, recovery and selectivity to NOx gas were found to be more enhanced.

  • PDF

Effects of NiO Addition in $WO_3$-based Gas Sensors Prepared by Thick film Process (후막법으로 제조된 $WO_3$ 기체센서의 NiO 첨가효과)

  • Noh, Whyo-Sub;Bae, In-Soo;Chung, Hoon-Taek;Lee, Woo-Sun;Hong, Kwang-Joon;Lee, Hyun-Kyu;Park, Jin-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.61-66
    • /
    • 2001
  • NiO-doped $WO_3$ thick films were prepared by a screen printing technique. The electrical property and microstructure of the films were investigated with the partial pressure of oxygen and the amount of NiO. The grain size of NiO-doped $WO_3$ was smaller than that of undoped $WO_3$, but the grain size of 0.1, 1, 10 mol% NiO-doped $WO_3$ were nearly the same. The electrical conductance of the $WO_3$ thick films decreased with the oxygen partial pressure, and increased with the amount of NiO to the limit of solid solution. The variation of the electrical conductance with temperature is not so large in the extrinsic region, but it changed rapidly in the intrinsic region. The conductance decreased with adsorption of oxygen in the intermediate range between the extrinsic and intrinsic region.

  • PDF