• 제목/요약/키워드: $UV-TiO_2$

검색결과 760건 처리시간 0.962초

Atomic Layer Deposition of $Sb_2S_3$ Thin Films on Mesoporous $TiO_2$

  • Han, Gyu-Seok;Jeong, Jin-Won;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.282-282
    • /
    • 2013
  • The antimony sulfide ($Sb_2S_3$) thin films were deposited using the gas phase method which known as atomic layer deposition (ALD) on mesoporous micro-films. Tris (dimethylamido) antimony (III[$(Me_2N)_3Sb$] and hydrogensulfide ($H_2S$) were used as precursors to deposit $Sb_2S_3$. Self-terminating nature of $(Me_2N)_3Sb$ and $H_2S$ reaction were demonstrated by growth rate saturation versus precursors dosing time. Absorption spectra and extinction coefficient were investigated by UV-VIS spectroscopy. Scanning electron microscopic analysis and X-ray photoelectron spectroscopy (XPS) depth profile were employed to determine the conformal deposition.

  • PDF

Dynamic Rapid Synthesis of Bis(2,2'-bipyridine)nitrato Zinc (II) Nitrate Using a Microwave Method and its Application to Dye-Sensitized Solar Cells (DSSC)

  • Kim, Young-Mi;Kim, Su-Jung;Nahm, Kee-Pyung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2923-2928
    • /
    • 2010
  • This study examined the synthesis of the crystal structure of bis(2,2'-bipyridine)nitrato zinc (II) nitrate, $[Zn(bipy)_2(NO_3)]^+NO_3^-$ using a microwave treatment at 300 W and 60 Hz for the application to dye-sensitized solar cells. The simulated complex structure of the complex was optimized with the density functional theory calculations for the UV-vis spectrum of the ground state using Gaussian 03 at the B3LYP/LANL2DZ level. The structure of the acquired complex was expected a penta-coordination with four nitrogen atoms of bipyridine and the oxygen bond of the $NO_3^-$ ion. The reflectance UV-vis absorption spectra exhibited two absorptions (L-L transfers) that were assigned to the transfers from the ligand ($\sigma$, $\pi$) of $NO_3$ to the ligand ($\sigma^*$, $\pi^*$) of pyridine at around 200 - 350 nm, and from the non-bonding orbital (n) of O in $NO_3$ to the p-orbital of pyridine at around 450 - 550 nm, respectively. The photoelectric efficiency was approximately 0.397% in the dye-sensitized solar cells with the nanometer-sized $TiO_2$ at an open-circuit voltage (Voc) of 0.39 V, a short-circuit current density (Jsc) of $1.79\;mA/cm^2$, and an incident light intensity of $100\;mW/cm^2$.

Characteristics of ZnO:Al thin films deposited with differentworking pressures (증착 압력에 따른 ZnO:Al 박막의 특성)

  • Kim, Seong-Yeon;Sin, Beom-Gi;Kim, Du-Su;Choe, Yun-Seong;Park, Gang-Il;An, Gyeong-Jun;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.49.2-49.2
    • /
    • 2009
  • 투명전극은 디스플레이, 태양전지와 같은 광전자 소자에 필수적이며, 지금까지 개발된 재료 중에는 ITO가 가장 투명하면서 전기전도도가 높고 생산성도 좋기 때문에 투명전극의 재료로 사용하고 있다. ITO는 낮은 비저항(${\sim}10^{-4}{\Omega}cm$) 과 높은 투과율 (~85 %), 상대적으로 넓은 밴드갭 에너지 (3.5 eV) 의특성과 같이 뛰어난 전기적 광학적 특성에 반해서 높은 원자재 가격, 불안정한 공급량 등으로 인한 문제점이꾸준히 제기되고 있다. 따라서 $In_2O_3$:Sn, ZnO:Al, ZnO:Ga, ZnO:F, ZnO:B, TiN 등과 같은 물질들로대체하려는 연구가 활발하게 진행되고 있다. ZnO는 ITO보다원자재의 수급이 원활하기 때문에 원가가 낮으며, 상대적으로 낮은 온도에서도 제작이 가능하다. 또한 화학적으로 안정적이므로 ZnO에 Al, Ga 등의 3족 원소를 도핑함으로써 낮은 비저항의 박막 제작이 가능하고, ITO 박막과 비교하여 etching이 쉬우며 기판과의 접착성이 좋으며, sputtering 공정시 plasma 분위기에서의 안정성이 뛰어나고 박막증착율이 높기 때문에 투명전극으로 적합한 재료이다. 본 연구에서는 cylindrical type의 Aldoping된 ZnO single target을 사용하여 박막 증착 압력의 변화를 주어 유리기판 위에 DC sputtering을 하였다. Fieldemission scanning electron microscope (FESEM)을 통해 ZnO:Al 박막의 표면의 형상과 두께를 확인하였으며, X-ray diffraction (XRD) 분석을 통해 박막의 결정학적 특성을 관찰하였다. 투명전극용 물질로서 ZnO:Al 박막의 적합성 여부를 확인하기 위하여 Van der Pauw 방법을 이용하여 박막의 비저항, 전자 이동도, 캐리어 농도를 측정하였으며, 박막의 기계적 성질 및 표면 접착성을 확인하기 위하여 nano-indentaion 분석을 하였다. 또한 UV-vis spectrophotometer를 이용하여 ZnO:Al 박막의 투과율을 분석하여 투명전극으로의 응용 가능성을 확인하였다.

  • PDF

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF

$TiO_2$-Mediated Photoreactions of Cinnamic Acid and Related Compounds in Methanol

  • Kim, Sung-Sik;Kim, Hyun-Jin;Lee, Hye-Jong;Park, Sang-Kyu
    • Journal of Photoscience
    • /
    • 제10권2호
    • /
    • pp.181-184
    • /
    • 2003
  • Photochemical reactions of some organic molecules on titanium dioxide were investigated in methanol. A methanolic solution of trans-cinnamic acid and titanium dioxide was irradiated with 300 nm UV lamps for 24 h to afford methyl cinnamate. In the case of trans-cinnamamide, the major product was found to be 3-phenylpropionamide, i.e., a saturation product of ethylenic double bond. However, irradiation of urocanic acid, caffeic acid, ethyl cinnamate, trans-chalcone, trans-cinnamonitrile, trans-stilbene or trans, trans-1,4-diphenyl-1,3-butadiene on titanium dioxide under the same conditions did not give any noticeable products. Meanwhile, when irradiated some aromatic aldehydes, such as trans-cinnamaldehyde, l-naphthaldehyde, and 2-naphthaldehyde in methanol, vicinal diols and alcohols derived from the diols were produced. On the other hand, irradiation of 9-anthraldehyde and titanium dioxide in methanol afforded only alcohols, in which diol was not observed.

  • PDF

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung;Kim, Chul-Hyun;Song, Myung-Kwan;Park, Jin-Su;Lee, Jae-Wook;Gal, Yeong-Soon;Lee, Jun-Hee;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.559-565
    • /
    • 2011
  • The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).

Preparation and Photocatalyric Properties of Organic-Inorganic Hybrid Abaca Cellulose@Titanium Dioxide Composite (유-무기 하이브리드 형 Abaca 셀룰로오스/이산화 티타늄 복합체의 제조 및 이의 광촉매적 특성)

  • Su-A, Kang;Young-Ho, Kim
    • Applied Chemistry for Engineering
    • /
    • 제34권1호
    • /
    • pp.57-63
    • /
    • 2023
  • In this study, an organic-inorganic hybrid composite of Abaca nanocellulose and titanium dioxide was prepared. Abaca nanocellulose was prepared by oxidizing Abaca cellulose using TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl) as a catalyst. Titanium dioxide nanoparticles were prepared by the sol-gel method, and a composite was prepared by hybridizing them with nanocellulose. As a result of comparing the properties of the composite and its physical properties according to the change in manufacturing pH, the effect of pH was very large when combining nanocellulose and titanium dioxide, and the optimal bonding performance was shown at pH 8 in this experimental condition. In addition, the prepared composite showed photocatalytic properties, and the higher the content of titanium dioxide, the higher the hydrophilicity of the composite according to UV light irradiation.

Structural, Electrical and Optical Properties of $HfO_2$ Films for Gate Dielectric Material of TTFTs

  • Lee, Won-Yong;Kim, Ji-Hong;Roh, Ji-Hyoung;Moon, Byung-Moo;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.331-331
    • /
    • 2009
  • Hafnium oxide ($HfO_2$) attracted by one of the potential candidates for the replacement of si-based oxides. For applications of the high-k gate dielectric material, high thermodynamic stability and low interface-trap density are required. Furthermore, the amorphous film structure would be more effective to reduce the leakage current. To search the gate oxide materials, metal-insulator-metal (MIM) capacitors was fabricated by pulsed laser deposition (PLD) on indium tin oxide (ITO) coated glass with different oxygen pressures (30 and 50 mTorr) at room temperature, and they were deposited by Au/Ti metal as the top electrode patterned by conventional photolithography with an area of $3.14\times10^{-4}\;cm^2$. The results of XRD patterns indicate that all films have amorphous phase. Field emission scanning electron microscopy (FE-SEM) images show that the thickness of the $HfO_2$ films is typical 50 nm, and the grain size of the $HfO_2$ films increases as the oxygen pressure increases. The capacitance and leakage current of films were measured by a Agilent 4284A LCR meter and Keithley 4200 semiconductor parameter analyzer, respectively. Capacitance-voltage characteristics show that the capacitance at 1 MHz are 150 and 58 nF, and leakage current density of films indicate $7.8\times10^{-4}$ and $1.6\times10^{-3}\;A/cm^2$ grown at 30 and 50 mTorr, respectively. The optical properties of the $HfO_2$ films were demonstrated by UV-VIS spectrophotometer (Scinco, S-3100) having the wavelength from 190 to 900 nm. Because films show high transmittance (around 85 %), they are suitable as transparent devices.

  • PDF

Removal Characteristics of Toluene by the Combined Plasma/Photocatalyst System (플라즈마/광촉매 결합시스템에 의한 톨루엔 제거특성)

  • Yoa, S.J.;Heo, Y.S.
    • Journal of Power System Engineering
    • /
    • 제11권2호
    • /
    • pp.64-71
    • /
    • 2007
  • The main purpose of this study is to analyze the characteristics of toluene removal by plasma, photocatalyst, and plasma/photocatalyst system with the major parameters such as flow rate, inlet toluene concentration and applied voltage, etc., experimentally. In the combined plasma/photocatalyst process, rates of toluene conversion are represented as 99% at flow rate 250, 500 mL/min while, below 97% at flow rate 1000 mL/min due to the low residence time(reaction time) at the same applied voltage 4173 voltage and toluene inlet concentration 50 ppm. The intermediate products are detected by GC/MS analysis showing the small amounts of benzoic acid, benzyl alcohol and residual ozone concentration $0.04{\sim}0.05$ ppm generated by plasma process in the present system.

  • PDF

Photo and Electrocatalytic Treatment of Textile Wastewater and Its Comparison

  • Singaravadivel, C.;Vanitha, M.;Balasubramanian, N.
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권1호
    • /
    • pp.44-49
    • /
    • 2012
  • Electrochemical and photochemical techniques have been proved to be effective for the removal of organic pollutants in textile wastewater. The present study deals with degradation of synthetic textile effluents containing reactive dyes and assisting chemicals, using electro oxidation and photo catalytic treatment. The influence of various operating parameters such as dye concentration, current density, supporting electrolyte concentration and lamp intensity on TOC removal has been determined. From the present investigation it has been observed that nearly 70% of TOC removal has been recorded for electrooxidation treatment with current density 5 mA/$dm^2$, supporting electrolyte concentration of 3 g/L and in photocatalytic treatment with 250 V as optimum lamp intensity nearly 67% of TOC removal was observed. The result indicates that electro oxidation treatment is more efficient than photocatalytic treatment for dye degradation.