• Title/Summary/Keyword: $UO_3$ kernel

Search Result 11, Processing Time 0.023 seconds

Effects of Process Parameters on the Powder Characteristics of Uranium Oxide Kernel Prepared by Sol-gel Process (Sol-gel 공정을 이용한 UO2 kernel 제조에서 공정변수가 입자특성에 미치는 영향)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Suhr, Dong-Soo;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.254-261
    • /
    • 2009
  • In this study, we investigated the unit process parameters in spherical $UO_2$ kernel preparation. Nearly perfect spherical $UO_3$ microspheres were obtained from the 0.6M of U-concentration in the broth solution, and the microstructure of the $UO_2$ kernel appeared the good results in the calcining, reducing, and sintering processes. For good sphericity, high density, suitable microstructure, and no-crack final $UO_2$ microspheres, the temperature control range in calcination process was $300{\sim}450^{\circ}C$, and the microstructure, the pore structure, and the density of $UO_2$ kernel could be controlled in this temperature range. Also, the concentration changes of the ageing solution in aging step were not effective factor in the gelation of the liquid droplets, but the temperature change of the ageing solution was very sensitive for the final ADU gel particles.

Spherical UO2 Kernel and TRISO Coated Particle Fabrication by GSP Method and CVD Technique (겔침전과 화학증착법에 의한 구형 UO2 입자와 TRISO 피복입자 제조)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.590-597
    • /
    • 2010
  • HTGR using a TRISO coated particles as nuclear raw fuel material can be used to produce clean hydrogen gas and process heat for a next-generation energy source. For these purposes, a TRISO coated particle was prepared with 3 pyro-carbon (buffer, IPyC, and OPyC) layers and 1 silicone carbide (SiC) layer using a CVD technique on a spherical $UO_2$ kernel surface as a fissile material. In this study, a spherical $UO_2$ particle was prepared using a modified sol-gel method with a vibrating nozzle system, and TRISO coating fabrication was carried out using a fluidized bed reactor with coating gases, such as acetylene, propylene, and methyltrichlorosilane (MTS). As the results of this study, a spherical $UO_2$ kernel with a sphericity of 1+0.06 was obtained, and the main process parameters in the $UO_2$ kernel preparation were the well-formed nature of the spherical ADU liquid droplets and the suitable temperature control in the thermal treatment of intermediate compounds in the ADU, $UO_3$, and $UO_2$ conversions. Also, the important parameters for the TRISO coating procedure were the coating temperature and feed rate of the feeding gas in the PyC layer coating, the coating temperature, and the volume fraction of the reactant and inert gases in the SiC deposition.

A Basic Study on Spherical UO2 Kernel Preparation Using the Sol-Gel Method (Sol-Gel법을 이용한 구형 UO2 Kernel 제조에 관한 기초연구)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Cho, Moon-Sung;Na, Sang-Ho;Lee, Young-Woo;Chang, Jong-Wha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.618-623
    • /
    • 2005
  • HTGR (High Temperature Gas-Cooled Reactor) is highlighted to next generation power plant for producing the clean hydrogen gas. In this study, the spherical $UO_2$ kernel via $UO_3$ gel particles was prepared by the sol-gel process. Raw material of slightly Acid Deficient Uranyl Nitrate (ADUN) solution, which has pH = 1.10 and $[NO_3]/[U]$ mole ratio = 1.93, was obtained from dissolution of $U_3O_8$ powder with conc.-$HNO_3$. The surface of these spherical $UO_3$ gel particles, which was prepared from the broth solution, consisted of 1 M-uranium, 1 M-HMTA, and urea, were covered with the fine crystallite aggregates, and these particles were so hard that crushed well. But the other $UO_3$ gel particles prepared with the broth solution, consisted of 2 M-uranium, 2 M-HMTA, and urea, have soft surface characteristics and an amorphous phase. This type of $UO_3$ gel particles is some chance of doing possibility of high density from the compaction. The amorphous $UO_3$ gel particles was converted to $U_3O_8$ and then $UO_2$ by calcination at $600^{\circ}C\;in\;4\%\;-\;H_2\;+\;N2$ atmosphere.

Effects of Thermal Treatment Conditions on the Powder Characteristics of Uranium Oxide in HTGR Fuel Preparation (고온가스로용 핵연료 제조에서 열처리 조건이 우라늄산화물 입자 특성에 미치는 영향)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Suhr, Dong-Soo;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • The effects of thermal treatment conditions on ADU (ammonium diuranate) prepared by SOL-GEL method, so-called GSP (Gel supported precipitation) process, were investigated for $UO_2$ kernel preparation. In this study, ADU compound particles were calcined to $UO_3$ particles in air and Ar atmospheres, and these $UO_3$ particles were reduced and sintered in 4%-$H_2$/Ar. During the thermal calcining treatment in air, ADU compound was slightly decomposed, and then converted to $UO_3$ phases at $500^{\circ}C$. At $600^{\circ}C$, the $U_3O_8$ phase appeared together with $UO_3$. After sintering of theses particles, the uranium oxide phases were reduced to a stoichiometric $UO_2$. As a result of the calcining treatment in Ar, more reduced-form of uranium oxide was observed than that treated in air atmosphere by XRD analysis. The final phases of these particles were estimated as a mixture of $U_3O_7$ and $U_4O_9$.

Preparation of an Intermediate and Particle Characteristics for HTGR Nuclear Fuel (고온가스로 핵연료 중간물질 제조와 분말특성)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Lee, Young-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.124-131
    • /
    • 2007
  • In this study, first the ADU gel particle, an intermediate for final $UO_2$ kernel of a HTGR nuclear fuel, was prepared from sol-gel method using the broth solution which was made by mixing of the uranyl nitrate, poly vinyl alcohol and tetra-hydrofurfuryl alcohol. The prepared dried-ADU gel particles were converted to the $UO_2\;via\;UO_3$ from thermal treatment with the 4% $H_2$ atmosphere. The sizes of the spherical liquid droplets appeared $1900{\sim}2100{\mu}m$, and the harmony between the flow rate of the broth solution and the frequency and the amplitude of a vibrating system are important factors for the spherical ADU gel particles via the mono size spherical droplets. From the XRD and FT-IR analyses, the prepared ADU gel particles were judged to be a $UO_3{\cdot}xNH_3{\cdot}yH_2O$ form, and the most important factor during the thermal treatment of the dried-ADU gel particle must be avoided a rapidly heating rate in the range of $180{\sim}400^{\circ}C$, and the heating rate should be kept below $5^{\circ}C/min$.

UO2 Kernel Particle Preparation for HTGR Nuclear Fuel (고온가스로용 핵연료 UO2 Kernel 입자제조)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.437-444
    • /
    • 2007
  • The broth solution was prepared by the mixing of an uranyl nitrate, THFA, PVA, and water. The uranium concentration of the broth solution was $0.5{\sim}0.8$ mole-U/L and the viscosity of it was $30{\sim}80cSt$. The droplets of this broth solution were farmed in air and ammonia by the vibrating nozzle with the frequency of 100 Hz at the amplitude of $100{\sim}130V$. The diameter of the droplet was about $1900{\mu}m$ from using the nozzle diameter of 1 mm. The diameter of the aged gel was about $1400{\mu}m$ after aging in ammonia solution at $60{\sim}80^{\circ}C$, and the dried gel with the diameter of about $900{\mu}m$ was obtained after drying at room temperature or partially vacuum condition. The diameter of the calcined $UO_3$ microsphere after calcination at $600^{\circ}C$ appeared about $800{\mu}m$ in air atmosphere. Although the droplets of the same sizes were formed, the calcined microspheres of different sizes were manufactured in the case of the broth solutions of the different uranium concentration. The droplets of the desired diameters were obtained by the change of the nozzle diameters and the broth flow rates.

UO2 Spheres Produce by External Gelation Process (외부겔화공정을 이용한 이산화우라늄 구형 입자 제조)

  • Kim, Yeon-Ku;Sah, Injin;Kim, Eung Seon
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.533-541
    • /
    • 2020
  • UO2 kernels, a key component of fuel elements for high temperature gas cooled reactors, have usually been prepared by sol-gel methods. Sol-gel processes have a number of advantages, such as simple processes and facilities, and higher sphericity and density. In this study, to produce 900 ㎛-sized UO2 particles using an external gelation process, contact length extension of the NH3 gas of the broth droplets pass and the improvement of the gelation device capable of spraying 14 M-NH4OH solution are used to form 3,000 ㎛-sized liquid droplets. To produce high-sphericity and high-density UO2 particles, HMTA, which promotes the gelation reaction in the uranium broth solution, is added to diffuse ammonium ions from the outside of the gelation solution during the aging process and generate ammonium ions from the inside of the ADU gel particles. Sufficient gelation inside of ADU gel particles is achieved, and the density of the UO2 spheres that undergo the subsequent treatment is 10.78 g/㎤; the sphericity is analyzed and found to be 0.948, indicating good experimental results.

Study on an Intermediate Compound Preparation for a HTGR Nuclear Fuel (고온가스로용 핵연료 중간화합물 제조에 대한 연구)

  • Kim, Yeon-Ku;Suhr, Dong-Soo;Jeong, Kyung-Chai;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.725-733
    • /
    • 2008
  • In this study the preparation method of the spherical ADU droplets, intermediate compound of a HTGR nuclear fuel, was detailed-reviewed and then, the characteristics on an ageing and a washing steps among the wet process and the thermal treatment process on the died-ADU${\rightarrow}UO_3$ conversion with the high temperature furnaces were studied. The key parameters for spherical droplets forming are a precise control of feed rate and a suitable viscosity value selection of a broth solution. Also, a harmony of vibrating frequency and amplitude of a vibration dropping system are important factor. In our case, an uranium concentration is $0.5{\sim}0.7mol/l$, viscosity is $50{\sim}80$ centi-Poise, vibration frequency is about 100Hz. In thermal treatment for no crack spherical $UO_3$ particle, the heating rate in the calcination must be operated below $2^{\circ}C$/min, in air atmosphere.

Characteristics of the Ammonium Diuranate Powders Prepared with Different Experimental Apparatus in Sol-gel Process (졸-겔 방법으로 제조된 Ammonium Diuranate 핵연료 분말의 공정장치 변수에 따른 특성)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Ueom, Sung-Ho;Cho, Moon Sung
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.398-404
    • /
    • 2012
  • This paper describes the spherical ammonium diuranate gel particles which are the intermediated material of the $UO_2$ microsphere for an VHTR(very high temperature reactor) nuclear fuel. The characteristics of the intermediate-ADU gel particles prepared by AWD(ageing, washing, and drying) and FB(fluidized-bed) apparatus were examined and compared in a sol-gel fabrication process. The electrical conductivity of washing filtrate from the FB treating and the surface area of dried-ADU gel particles were higher than those of AWD treating. Also, an internal pore volume in dried-ADU gel particles showed a more decrease in AWD treatment than FB treatment because of decomposition of PVA affected by the washing time. However, the internal microstructures of ADU gel particles were similar regardless of the process variation.

Sintering and Characterization of SiC-matrix Composite Including TRISO Particles (TRISO 입자를 포함하는 SiC 복합소결체의 소결 및 특성 평가)

  • Lee, Hyeon-Geun;Kim, Daejong;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.418-423
    • /
    • 2014
  • Fully ceramic micro encapsulated (FCM) nuclear fuel is a concept recently proposed for enhancing the stability of nuclear fuel. FCM nuclear fuel consists of tristructural-isotropic (TRISO) fuel particles within a SiC matrix. Each TRISO fuel particle is composed of a $UO_2$ kernel and a PyC/SiC/PyC tri-layer which protects the kernel. The SiC ceramic matrix is created by sintering. In this FCM fuel concept, fission products are protected twice, by the TRISO coating layer and by the SiC ceramic. The SiC ceramic has proven attractive for fuel applications owing to its low neutron-absorption cross-section, excellent irradiation resistivity, and high thermal conductivity. In this study, a SiC-matrix composite containing TRISO particles was sintered by hot pressing with $Al_2O_3-Y_2O_3$ additive system. Various sintering conditions were investigated to obtain a relative density greater than 95%. The internal distribution of TRISO particles within the SiC-matrix composite was observed using an x-ray radiograph. The fracture of the TRISO particles was investigated by means of analysis of the cross-section of the SiC-matrix composite.