• Title/Summary/Keyword: $Ti_3Al$

Search Result 1,565, Processing Time 0.028 seconds

Al-10wt%Ti-4wt%F Alloys as In-situ Composites through Rapid Solidification(II) (급냉응고법에 의한 In-Situ 복합재료로서의 Al-10wt%Ti-4wt%Fe 합금 (II))

  • Kim, Hye-Seong;Jeong, Jae-Pil;Gwon, Suk-In;Geum, Dong-Hwa
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1127-1132
    • /
    • 1998
  • The possibilities of producing Al-10%Ti-4%Fe composites through in-situ processing and thus achieving mechanical property improvements over binary Al-10%Ti to a level or higher exhibited by PM SiC/A12124 composites were explored in this study. The microstructure of in-situ processed Al-10%Ti-4%Fe composites was similar to that of Al matrix composites reinforced with discontinuous SiC particulates(SiC/A12124) and significant enhancements in elastic modulus, tensile strength and wear resistance were observed as compared to Al-10%Ti alloy. These results can be attributed to the in-situ formed Al. Fe by third element addition, leading to additional dispersion strengthening effect over $Al_3Ti$ phase reinforcement in Al-Ti system.

  • PDF

Effects of Mg-Al Alloy and Pure Ti on High Temperature Wetting and Coherency on Al Interface Using the Sessile Drop Method (정적법을 이용한 Mg-Al계 합금과 순수 Ti의 고온 젖음현상 및 Al계면에서의 정합성에 미치는 영향)

  • Han, Chang-Suk;Kim, Woo-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.38-42
    • /
    • 2021
  • In this study, high temperature wetting analysis and AZ80/Ti interfacial structure observation are performed for the mixture of AZ80 and Ti, and the effect of Al on wetting in Mg alloy is examined. Both molten AZ80 and pure Mg have excellent wettability because the wet angle between molten droplets and the Ti substrate is about 10° from initial contact. Wetting angle decreases with time, and wetting phenomenon continues between droplets and substrate; the change in wetting angle does not show a significant difference when comparing AZ80-Ti and Mg-Ti. As a result of XRD of the lower surface of the AZ80-Ti sample, in addition to the Ti peak of the substrate, the peak of TiAl3, which is a Ti-Al intermetallic compound, is confirmed, and TiAl3 is generated in the Al enrichment region of the Ti substrate surface. EDS analysis is performed on the droplet tip portion of the sample section in which pure Mg droplets are dropped on the Ti substrate. Concentration of oxygen by the natural oxide film is not confirmed on the Ti surface, but oxygen is distributed at the tip of the droplet on the Mg side. Molten AZ80 and Ti-based compound phases are produced by thickening of Al in the vicinity of Ti after wetting is completed, and Al in the Mg alloy does not affect the wetting. The driving force of wetting progression is a thermite reaction that occurs between Mg and TiO2, and then Al in AZ80 thickens on the Ti substrate interface to form an intermetallic compound.

High Temperature Oxidation Behavior of Plasma-sprayed Ti(Al,O)/$Al_2O_3$ Coatings on SS41 Steel (Ti(Al,O)/$Al_2O_3$ 플라즈마 코팅한 SS41의 고온산화 거동)

  • Choi, G.S.;Woo, K.D.;Lee, H.B.;Jeon, J.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.231-236
    • /
    • 2007
  • High velocity oxy-fuel (HVOF) spraying was used to coat Ti(Al,O)/$Al_2O_3$ powder onto the SS41 steel plate. Macrostructure of the coated specimen has been investigated by scanning electron micrograph (SEM). High temperature oxidation behavior of the coated specimen and SS41 steel have been studied. From the results of SEM observation, Ti(Al,O)/$Al_2O_3$ powder was coated well onto the substrate SS41 steel. Porosity onto the coated layer was only 0.38%. The oxidation results showed that Ti(Al,O)/$Al_2O_3$ powder coated SS41 steel have improved little oxidation resistance at $900^{\circ}C$ in air, but improved remarkably oxidation resistance at $800^{\circ}C $ in air compare to the substrate SS41 steel.

Solid-state reaction kinetics for the formation of aluminium titanate ($AL_2TiO_5$) from amorphous $TiO_2$ and $\alpha-AL_2O_3$ (비정질 $TiO_2$$\alpha-AL_2O_3$부터 $AL_2TiO_5$를 합성하기 위한 고체상태 반응속도)

  • Ik Jin Kim;Oh Seong Kweon;Young Shin Ko;Constantin Zografou
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.259-270
    • /
    • 1997
  • Reaction kinetics for the solid-state reaction of $\alpha-Al_2O_3$ with amorphous $TiO_2$ to produce $Al_2TiO_5$ (Tialite) was studied in the temperature range of $1200~1300^{\circ}C$. Rate of kinetic reaction were determined by using $TiO_2$-coated $Al_2O_3$ compact containing 50 mol% $TiO_2$ and heating the reactant mixtures in MgO at definite temperature for various times. Amount of products and unreacted reactants were determined by X-ray diffractometry. Data from the volume fraction and ratio of peak intensities of $\beta-Al_2TiO_5$ indicated that the reaction of $\alpha-Al_2O_3$ with $TiO_2$ to form pseudobrookite starts between 1280 and $1300^{\circ}C$. The activation energy for solid-state reaction was determined by using the Arrhenius equation ; The activation energy was 622.4 kJ/mol.

  • PDF

High-temperature oxidation of Ti3(Al,Si)C2 nano-laminated compounds in air

  • Lee, Hwa-Shin;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.147-148
    • /
    • 2007
  • The compound, Ti3(Al,Si)C2, was synthesized by hot pressing a powder mixture of TiCX, Al and Si. Its oxidation at 900 and 1000 oC in air for up to 50 h resulted in the formation of rutile-TiO2, -Al2O3 and amorphous SiO2. During oxidation, Ti diffused outwards to form the outer TiO2 layer, and oxygen was transported inwards to form the inner mixed layer.

  • PDF

EFFECT OF ALUMINIDE-YTTRIUM COMPOSITE COATING ON THE OXIDATION RESISTANCE OF TiAl ALLOY

  • Jung, Hwan-Gyo;Kim, Jong-Phil;Kim, Kyoo-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.607-614
    • /
    • 1996
  • Yttrium(Y) coating was incorporated by ion-plating method either directly on the TiAl substrate or after pack aluminizing on TiAl to improve the oxidation resistance of TiAl alloy. After Y-coating, heat treatment at low oxygen partial pressure was carried out. Performance of various coating was evaluated by isothermal and cyclic oxidation tests. A simple Y-coating without pack aluminizing can give a detrimental effect on the. oxidation resistance of TiAl alloy, because it enhances formation of $TiO_2$. On the other hand, a composite coating of aluminide-yttrium has shown excellent oxidation resistance. A continuous protective $Al_2O_3$ scale is formed on the aluminized TiAl, and Y-coating improves $Al_2O_3$ scale adherence and substantially prevents depletion of Al in the aluminide-coating layer.

  • PDF

Comparisons of Inorganic Compounds between the Ginsengs, Keumsan, Chungnam and their Soils (충남 금산의 인삼 및 토양의 무기 원소 함량 비교)

  • Song, Suck-Hwan;You, Seon-Gyun;Kim, Ill-Chool
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.12-21
    • /
    • 2007
  • Ginsengs (1,2 3 years) from the Keumsan are analysed for the inorganic compounds and compared with the their soils from the granite, phyllite and shale areas. In the soils, the granite areas show high $Al_2O_3\;and\;Na_2O$ contents while the phyllite areas have high $Fe_2O_3,\;MnO\;and\;MgO$ contents. Positive correlations are shown in the $Al_2O_3-K_2O\;and\;Fe_2O_3-MgO$ pairs while negative correlations are shown in the $SiO_2-CaO$ pair. In the ginsengs, the shale areas are high in the most of the elements, but low in the granite areas. Compared with same soils of different ages, Al, Na and Ti contents of the ginsengs are high in the all areas. The shale areas are mainly high in the upper parts while the granite areas are mainly high in the root parts. Regardless of the localities, Fe, Mn and Ca contents are high in the upper parts while Ti contents are high in the root parts with differences of several times. Relative ratios between field soils and ginsengs (field soil/ginseng) suggest that the ginsengs show high Ca contents with differences of several ten times whereas the soils have high Na, Fe, Ti and Al contents with differences of several times. Regardless of the localities, the ratios of the Al, Mn and Na are high in the 2 year relative to the 3 year. Overall ratios between field soils and ginsengs are mainly big in the 2 year area relative to the 3 year area. It suggests that contents of the 3 year ginsengs are more similar to those of their soils relative to the 2 year and the ginsengs may absorpt eligible element contents with increasing ages.

Luminescent Properties of SrTiO3 Phosphors doped with Pr,Eu and Al (Pr,Eu,Al을 첨가한 SrTiO3 형광체의 발광특성)

  • Park, Chang-Sub;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.527-530
    • /
    • 2007
  • [ $SrTiO_3$ ] red phosphors doped with Pr, Er and Al were synthesized by solid state reaction method. Three emission peaks in photoluminescence spectra of the $SrTiO_3:Eu$ Phosphors were observed at 583 nm, 610 nm and 685 nm. The emission peaks in the $SrTiO_3:Eu$ phosphors were associated with charge-transfer states. The decrease of photoluminescence intensity in $SrTiO_3:Eu,Al$ phosphors with doping Al ions was interpreted by the change of charge-transfer states.

Preparation of $Al_2O_3-TiO_2$ Composite Powder from Alkoxides (I) 1. Preparation of $Al_2TiO_5$ by the SOl-gel Method and the effects of Additives (알콕사이드로부터 $Al_2O_3-TiO_2$계 복합분체의 합성(I) 1. Sol-Gel법에 의한 $Al_2TiO_5$ 분말합성과 첨가제의 영향)

  • 정종열;이형민;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.10
    • /
    • pp.1138-1146
    • /
    • 1996
  • Al2TiO5 powder was prepared by the sol-gel processing from th metal alkoxides ; aluminium sec-butoxide (Al(OC4H9)3 and tetraethyl orthotitanate (Ti(OC2H5)4) The particles of Al2TiO5 produced from alkoxides were measured to be below $1.5mutextrm{m}$ and mre than 90% weere below 1 ${\mu}{\textrm}{m}$ however those from commercial alumina and titania were over 0.5-7${\mu}{\textrm}{m}$ and only 60% were below 1${\mu}{\textrm}{m}$ and 90% were below 2.5${\mu}{\textrm}{m}$ Therefore Al2TiO5 powder produced from alkoxides had the narrower distributionin size than that produced from the commercial alumina and titania powders. The addition of mullite or Al2O3 powder to the prepared aluminum titanate inhibited the grain growth and this resulted in decreased and increase in density.

  • PDF