• Title/Summary/Keyword: $Ti_{0.33}Al_{0.67}N$

Search Result 6, Processing Time 0.023 seconds

Hardness and Oxidation Resistance of Ti0.33Al0.67N/CrN Nano-multilayered Superlattice Coatings

  • Ahn, Seung-Su;Oh, Kyung-Sik;Chung, Tai-Joo;Park, Jong-Keuk
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.49-55
    • /
    • 2019
  • $Ti_{0.33}Al_{0.67}N/CrN$ nano-multilayers, which are known to have excellent wear resistance, were prepared using an unbalanced magnetron sputter to have various periods of 2-5 nm. $Ti_{0.33}Al_{0.67}N$ had a hexagonal structure in a single layer, but converted to a cubic structure by forming a multilayer with CrN, which has a cubic structure. Thus, $Ti_{0.33}Al_{0.67}N$ formed a superlattice in the multilayer. The $Ti_{0.33}Al_{0.67}/CrN$ multilayer with a period of 2.5 nm greatly exceeded the hardness of the $Ti_{0.33}Al_{0.67}N$ and the CrN single layer, reaching 39 GPa. According to the low angle X-ray diffraction results, the $Ti_{0.33}Al_{0.67}N/CrN$ multilayer maintained its as-coated structure to a temperature as high as $700^{\circ}C$ and exhibited hardness of 30 GPa. The thickness of the oxide layer of the $Ti_{0.33}Al_{0.67}N/CrN$ multilayered coating was less than one-tenth of those of the single layers. Thus, $Ti_{0.33}Al_{0.67}N/CrN$ multilayered coating had hardness and oxidation resistance far superior to those of its constituent single layers.

Properties of Pt/${Al_0.33}{Ga_0.67}N$ Schottky Type UV Photo-detector (Pt 전극을 이용한 ${Al_0.33}{Ga_0.67}N$ 쇼트키형 자외선 수광소자의 동작특성)

  • 신상훈;정영로;이재훈;이용현;이명복;이정희;이인환;한윤봉;함성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.486-493
    • /
    • 2003
  • Schottky type A $l_{0.33}$G $a_{0.67}$N ultraviolet photodetectors were fabricated on the MOCVD grown AlGaN/ $n^{+}$-GaN and AlGaN/AlGaN interlayer/ $n^{+}$-GaN structures. The grown layers have the carrier concentrations of -$10^{18}$, and the mobilities were 236 and 269 $\textrm{cm}^2$/V.s, respectively. After mesa etching by ICP etching system, the Si3N4 layer was deposited for passivation between the contacts and Ti/AL/Ni/Au and Pt were deposited for ohmic and Schottky contact, respectively. The fabricated Pt/A $l_{0.33}$G $a_{0.67}$N Schottky diode revealed a leakage current of 1 nA for samples with interlayer and 0.1$\mu\textrm{A}$ for samples without interlayer at a reverse bias of -5 V. In optical measurement, the Pt/A $l_{0.33}$G $a_{0.67}$N diode with interlayer showed a cut-off wavelength of 300 nm, a prominent responsivity of 0.15 A/W at 280 nm and a UV-visible extinction ratio of 1.5x$10^4./TEX>.

High-temperature Oxidation Kinekics and Scales Formed on the TiAlSiN film (TiAlSiN 코팅의 대기중 고온산화 속도와 스케일 분석)

  • Ji, Gwon-Yong;Park, Sang-Hwan;Kim, Min-Jeong;Park, Sun-Yong;Jeong, Seung-Bu;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.131-132
    • /
    • 2015
  • $Ti_{0.26}Al_{0.16}Si_{0.01}N_{0.57}$ (at%) coatings were synthesized on stainless steel 304 by using arc ion plating systems (AIPS). Targets employed for the deposition were Ti, AlSi(67:33at%) and AlSi(82:18at%). The thickness of TiAlSiN coatings is $4{\mu}m$. The oxidation characteristics of the deposited coatings were studied by thermogravimetric analysis (TGA) in air between 800 and $900^{\circ}C$ for 75 hr. The oxide scale formed on the TiAlSiN coatings consisted of $rutile-TiO_2$ layer and ${\alpha}-Al_2O_3$. At $800^{\circ}C$, the coatings oxidized relatively slowly, and the scales were thin and adherent. When oxidized above $900^{\circ}C$, $TiO_2$ grew fast over the mixed oxide layer, and the oxide scale formed on TiAlSiN coatings was prone to spallation. Microstructural changes of the TiAlSiN coatings that occurred during high temperature oxidation were investigated by EPMA, XRD, SEM and TEM.

  • PDF

Geochemistry and Mineralogy of Metapelite and Barium-Vanadium Muscovite from the Ogcheon Supergroup of the Deokpyeong Area, Korea (덕평지역(德平地域)의 옥천누층군(沃川累層群)에 분포(分布)하는 변성이질암(變成泥質岩)과 바륨-바나듐 백운모(白雲母)의 지구화학적(地球化學的) 및 광물학적(鑛物學的) 특성(特性))

  • Lee, Chan Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.35-49
    • /
    • 1997
  • The coal formation of the Deokpyeong area are interbedded along metapelites of the Ogcheon Supergroup, which are composed mainly of graphite, quartz, muscovite and associated with small amounts of biotite, chlorite, pyrite and barite. The ratios of $SiO_2/Al_2O_3$, $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ of the coaly metapelite are variable and wide range from 1.80 to 10.21, from 27.8 to 388.8 and from 7.6 to 61.8, respectively. These coal formation were deposited in basin of marine environments, and the REE of these rocks are not influenced with metamorphism and hydrothermal alterations on the basis of $Al_2O_3$ versus La, La against Ce, the ratios of La/Ce (0.19 to 0.99) and Th/U (0.02 to 4.75). These rocks also show much variation in $La_N/Yb_N$ (1.19 to 22.89), Th/Yb (0.14 to 21.43) and La/Th (0.44 to 13.67), and their origin is explained by derivation from a mixture of sedimentary and igneous rocks. The wide range in trace and REE element characteristics as Co/Th (0.12 to 2.78), La/Sc (0.33 to 10.18), Sc/Th (0.57 to 5.73), V/Ni (8 to 2347), Cr/V (0.02 to 0.67) and Ni/Co (1.56 to 32.95) of these coaly metapelites argues for inefficient mixing of the various source lithologies during sedimentation. Deep to pale green barium-vanadium muscovites (vanadium-oellacherite) have been found in this coal formations. Modes of occurrence and grain size of muscovite are heterogeneous, but most of the barium and vanadium-bearing muscovites occur along the boundaries between graphite and quartz grains, ranging from 200 to $350{\mu}m$ in length and from 40 to $60{\mu}m$ in width. Results of X-ray diffraction data of the minerals characterized to be monoclinic system with $a=5.249{\AA}$, $b=8.939{\AA}$, $c=20.924{\AA}$ and ${\beta}=95.894^{\circ}$. Representative chemical formula of the muscovite was $(Na_{0.09}K_{1.44}Ba_{0.46})(Al_{2.75}Ti_{0.07}V_{0.56}Fe_{0.08}Mg_{0.50})(Si_{6.12}Al_{1.88})O_{22}$. The V possibly substitute octahedral Al, and the Ba is coupled substitution of $K^+Si^{4+}=Ba^{2+}Na^+Ca^{2+}$, which compositional ranges of V and Ba are from 0.42 to 0.69 and from 0.34 to 0.56 based on $O_{22}$, respectively. Formation mechanism of the barium-vanadium muscovites in the coaly metapelite is shown that the formed by high pressure and temperature from regional metamorphism origanated during diagenesis at the interface between a basinal brine and organic matter.

  • PDF

Geochemical Characteristics of Soils and Sediments at the Narim Mine Drainage, Korea: Dispersion, Enrichment and Origin of Heavy Metals (나림광산 수계의 토양과 퇴적물에 관한 지구화학적 특성: 중금속 원소의 분산, 부화 및 기원)

  • Lee, Chan Hee;Lee, Hyun Koo;Lee, Jong Chang
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.297-310
    • /
    • 1998
  • Geochemical characteristics of environmental toxic elements at the Narim mine area were investigated on the basis of major, minor, rare earth element geochemistry and mineralogy. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in soils and sediments range from 11.57 to 22.21 and from 1.86 to 3.93, and are partly negative and positive correlation against $SiO_2/Al_2O_3$ (3.41 to 4.78), respectively. These suggested that sediment source of host granitic gneiss could be due to rocks of high grade metamorphism originated by sedimentary rocks. Characteristics of some trace and rare earth elements of V/Ni (0.33 to 1.95), Ni/Co (2.00 to 6.50), Zr/Hf (11.27 to 53.10), La/Ce (0.44 to 0.55), Th/Yb (4.07 to 7.14), La/Th (2.35 to 3.93), $La_N/Yb_N$ (6.58 to 13.67), Co/Th (0.63 to 2.68), La/Sc (3.29 to 5.94) and Sc/Th (0.49 to 1.00) are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. Major elements in all samples are enriched $Al_2O_3$, MgO, $TiO_2$ and LOI, especially $Fe_2O_3$ (mean=7.36 wt.%) in sediments than the composition of host granitic gneiss. The average enrichment indices of major and rare earth elements from the mining drainage are 2.05 and 2.91 of the sediments and are 2.02 and 2.60 of the soils, normalizing by composition of host granitic gneiss, respectively. Average composition (ppm) of minor and/or environmental toxic elements in sediments and soils are Ag=14 and 1, As=199 and 14, Cd=22 and 1, Cu=215 and 42, Pb=1770 and 65, Sb=18 and 3, Zn=3333 and 170, respectively, and extremely high concentrations are found in the subsurface sediments near the ore dump. Environmental toxic elements were strongly enriched in all samples, especially As, Cd, Cu, Pb, Sb and Zn. The level of enrichment was very severe in mining drainage sediments, while it was not so great in the soils. Based on the EPA value, enrichment index of toxic elements is 8.63 of mining drainage sediments and 0.54 of soils on the mining drainage. Mineral composition of soils and sediments near the mining area were partly variable being composed of quartz, mica, feldspar, amphibole, chlorite and clay minerals. From the gravity separated mineralogy, soils and sediments are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various hydroxide minerals.

  • PDF

XRF Analysis and Polarizing Microscopic Study of the Lava Cave Formation, Korea, Japan and Russia (한국, 일본, 러시아 용암동굴 형성층의 형광X선 분석과 편광현미경적 연구)

  • Sawa, Isao;Furuyama, Katsuhiko;Ohashi, Tsuyoshi;Kim, Chang-Sik;Kashima, Naruhiko
    • Journal of the Speleological Society of Korea
    • /
    • no.74
    • /
    • pp.23-31
    • /
    • 2006
  • (1) Kaeusetgul Cave in Kimnyong-Ri, Jeju-Do, Korea. Kaeuset-gul Cave (KC) is situated in NNE area of the Manjang-gul cave (125m a.s.l.). Kaeuset-gul Cave lies at $126^{\circ}45'22"$ E in longitude and $33^{\circ}33'09"$ N in latitude. The coast belong Kimnyeong-Ri, Kujwa-eup, Jeju-Do. Altitude of the cave-entrance is 10m and length of the cave is 90m. Lava hand-specimens of KC are studied by X-ray fluorescence analysis (XRF). Average major chemical components of specimens from KC is as follows (wt.%); $SiO_2=47.03$, $TiO_2=3.16$, $Al_2O_3=18.41$, FeO*=13.53, MnO=0.14, MgO=5.05, CaO=8.66, $Na_2O=2.81$, $K_2O=0.67$, $P_2O_5=0.55$ in KC. Polarizing microscopic studyindicates that these specimens are described of alkali-basalt. (2) Tachibori Fuketsu (Cave) in Shizuoka Prefecture, Fuji Volcano, Japan Tachibori Fuketsu lies attoward the south in skirt of the Fuji volcano, $138^{\circ}42'04"$ east longitude and $35^{\circ}18'00"$ north latitude. The location of cave entrance is 2745, Awakura, Fujinomiya-shi, Shizuoka Prefecture. The above sea level and length of Tachibori Fuketsu are 1,170m and 82m. Average major chemical components of specimens from cave areas follows (Total 100 wt.%) ; ($SiO_2$=50.52, $TiO_2$=1.69, $Al_2O_3$=15.47, FeO*=13.13, MnO=0.20, MgO=5.97, CaO=9.17, $Na_2O$=2.52, $K_2O$=0.94 and $P_2O_5=0.40).$ Polarizing microscopic study indicates that these specimens may belong to tholeiite-basalt series. According to polarizing microscopic study, Au (Augite), P1 (Plagioclase), and O1 (Olivine) are contained as phenocryst minerals. (3) Gorely Cave in Kamchatka Peninsula, Russia Gorely caldera is located at the southeastern part of Kamchatka Peninsula, about 75km southwest of Petropavlovsk-Kamchatskiy.. Gorely lava caves are situated in NHE area of Mt. Gorely volcano (1829m a.s.1.). One of lava cave (Go-9612=K-1) lies at $158^{\circ}00'22"$ east longitude and $52^{\circ}36'18"$ north latitude. The elevation of cave entrance is about 990m a.s.1. and the main cave extends in the NNW direction for about 50m by 15m wide and 5m in depth. The cave of K-3is near the K-1 cave. "@Lava hand-specimens K-1 and K-3 caves are studied by X-ray fluorescence analysis and polarizing microscopic observation. Average major chemical components of specimens from these caves are as follows (wt.%) ;($SiO_2$=55.12, $TiO_2$=1.25, $Al_2O_3$=16.07, T-FeO* =9.41, MnO=0.16, MgO=5.01, CaO=7.21, $Na_2O$=3.39, $K_2O$=1.92, $P_2O_5$=0.45) and these values indicate that the Gorely basaltic andesite belong to high alumina basalt. Polarizing microscopic study indicates that these specimens are described of Augite andesite.