• Title/Summary/Keyword: $TiO_2-SnO_2$

Search Result 257, Processing Time 0.033 seconds

Electrochemical Treatment of Dyeing Wastewater using Insoluble Catalyst Electrode (불용성 촉매전극을 이용한 염색폐수의 전기화학적 처리)

  • Um, Myeong-Heon;Ha, Bum-Yong;Kang, Hak-Chul
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.133-144
    • /
    • 2003
  • In this study, Insoluble catalyst electrode for oxide systems were manufactured, by using of them, carried out experiments on electrolytic treatment of dyeing wastewater containing persistent organic compounds, and then made a comparative study of the efficiency of treatment for environmental pollutants and whether each of them is valuable of not as an electrode for soluble electrode(Fe, Al) and insoluble electrode(SUS, R.C.E; Replaced Catalyst Electrode) which were used in the electrolytic system. Besides, it was investigated the conditions for electrolytic treatment to find the maximum efficiency of electrolytic treatment. As the result of this study, by using of insoluble catalyst electrode for oxide can solved the stability of electrode that is one of the greatest problems in order to put to practical use of electrolysis process in the treatment of the sewage and wastewater and the result runs as follows; 1. The durability of insoluble catalyst electrode(R.C.E) can be verified the most favorable when the molar ratio of $RuO_2-SnO_2-IrO_2-TiO_2$(4 compounds system) is 70/20/5/5. 2. The efficiency of treatment was obtained a more than 90% goodness for CODMn and also a good results for T-N removal in the experimental conditions of the distance of electrode 5 mm, time of electrolysis 60 minutes, permissible voltage 10V, processing capacity $0.5{\ell}$.

  • PDF

All Solution processed BiVO4/WO3/SnO2 Heterojunction Photoanode for Enhanced Photoelectrochemical Water Splitting

  • Baek, Ji Hyun;Lee, Dong Geon;Jin, Young Un;Han, Man Hyung;Kim, Won Bin;Cho, In Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.417-417
    • /
    • 2016
  • Global environmental deterioration has become more serious year by year and thus scientific interests in the renewable energy as environmental technology and replacement of fossil fuels have grown exponentially. Photoelectrochemical (PEC) cell consisting of semiconductor photoelectrodes that can harvest light and use this energy directly to split water, also known as photoelectrolysis or solar water splitting, is a promising renewable energy technology to produce hydrogen for uses in the future hydrogen economy. A major advantage of PEC systems is that they involve relatively simple processes steps as compared to many other H2 production systems. Until now, a number of materials including TiO2, WO3, Fe2O3, and BiVO4 were exploited as the photoelectrode. However, the PEC performance of these single absorber materials is limited due to their large charge recombinations in bulk, interface and surface, leading low charge separation/transport efficiencies. Recently, coupling of two materials, e.g., BiVO4/WO3, Fe2O3/WO3 and CuWO4/WO3, to form a type II heterojunction has been demonstrated to be a viable means to improve the PEC performance by enhancing the charge separation and transport efficiencies. In this study, we have prepared a triple-layer heterojunction BiVO4/WO3/SnO2 photoelectrode that shows a comparable PEC performance with previously reported best-performing nanostructured BiVO4/WO3 heterojunction photoelectrode via a facile solution method. Interestingly, we found that the incorporation of SnO2 nanoparticles layer in between WO3 and FTO largely promotes electron transport and thus minimizes interfacial recombination. The impact of the SnO2 interfacial layer was investigated in detail by TEM, hall measurement and electrochemical impedance spectroscopy (EIS) techniques. In addition, our planar-structured triple-layer photoelectrode shows a relatively high transmittance due to its low thickness (~300 nm), which benefits to couple with a solar cell to form a tandem PEC device. The overall PEC performance, especially the photocurrent onset potential (Vonset), were further improved by a reactive-ion etching (RIE) surface etching and electrocatalyst (CoOx) deposition.

  • PDF

Fabrication of Various Semiconductor/Metal Structured Nanowires Using Metal Coating (금속 코팅을 통한 다양한 반도체/금속 나노선 제작)

  • Park, Byoung-Jun;Kim, Kyung-Hwan;Kim, Hyun-Suk;Cho, Kyoung-Ah;Kim, Jin-Hyong;Lee, Joon-Woo;Kim, Sang-Sing
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.252-255
    • /
    • 2004
  • Various Semiconductor/Metal structured nanowires were synthesized from the simple thermal annealing of ball-milled compound powders and the thermal evaporation of metals. Their structural properties were investigated by Scanning Electron Microscopy(SEM) and Transmission Electron Microscopy(TEM), Energy Dispersive X-ray spectroscopy(EDX). Depending on the type of metals and the material of nanowires, uniform somiconductor/metal nanowires(GaN/Al, GaN/Ag) or isolated metal particles on semiconductor nanowires$(SnO_2/Ti,\;Si/Ti)$ were formed on the surface of nanowires.

  • PDF

Fabrication and characteristics of modified PZT System doped With $La_2O_3$ ($La_2O_3$가 첨가된 modified PZT계의 제조 및 특성)

  • 황학인;박준식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.418-427
    • /
    • 1997
  • The effect of $La_2O_3$ as a dopant on the microstructure structure, crystal structure and electrical properties was studied. $0.05Pb(Sn_{0.5}Sb_{0.5})O_3+0.11PbTiO_3+0.84PbZroO_3+0.4Wt%MnO_2$ (=0.05PSS +0.11PT+0.84PZ+0.4wt%$MnO_2$) systems doped with 0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 mole% $La_2O_3$ were fabricated and investigated sintering density, crystal structure and micro-structure. The sintered 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system doped with $La_2O_3$showed sintering density of the range of 7.683 g/㎤ of 0 mole% doping to 7.815 g/㎤ of 0 mole% doping. The average grain sizes in the range of 0 to 5 mole% $La_2O_3$were decreased from 9.0 $\mu\textrm{m}$ to 1.3 $\mu\textrm{m}$. X-ray diffraction investigation of sintered bodies showed that solid solutions were formed between 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system and $La_2O_3$ in the range of 0 to 1 mole% but second phases were formed in case of 3, 5 mole%. Dielectric constants at 1 kHz were increased with 0 to 3 mlole% $La_2O_3$ before and after poling at the condition of 5 $KV_{DC}$/mm at $120^{\circ}C$ or $140^{\circ}C$ during 20 minutes. All Dielectric losses at 1 kHz were less than 1%, Curie temperatures were $208^{\circ}C$, $183^{\circ}C$, $152^{\circ}C$ and $127^{\circ}C$ at 0, 0.5, 1, 3 mole% $La_2O_3$ respectively. The values of $K_p$ were increased from 0 to 3 mole% $La_2O_3$ after poling at condition of 5 $KV_{DC}$mm at the condition of $120^{\circ}C$ or $140^{\circ}C$. The case of 0.7 mole% $La_2O_3$doped 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system showed $K_p$ of 14.5% by poling at $140^{\circ}C$ during 20 minutes.

  • PDF

Dielectric and Piezoelectric Properties of PSS-PT-PZ Ceramics with the Addition of Dopant (불순물 첨가에 따른 PSS-PT-PZ 세라믹의 유전 및 압전특성)

  • Kang, Jeong-Min;Lee, Sung-Gap;Lee, Sang-Heon;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.296-299
    • /
    • 2003
  • In this paper, $0.10Pb(Sb_{1/2}Sn_{1/2})O_3-0.25PbTiO_3-0.65PbZrO_3$ ceramics were fabricated by the mixed-oxide method. The sintering temperature and time were $1230^{\circ}C$ and 2[hr], respectively. The structural, dielectric and piezoelectric properties with addition of NiO were studied. The crystal structure of a specimen was rhombohedral. As a result of SEM, the average grain size were decreased with increasing the contents of NiO. But the grains of the specimens doped with 0.4wt% NiO were increased, due to deposits of excess NiO at grain boundaries in the liquid phase. Relative dielectric constant and dielectric loss of the specimen doped with 0.1wt% NiO were 701 and 0.026, respectively.

  • PDF

Manufacture and characteristic evaluation of Amorphous Indium-Gallium-Zinc-Oxide (IGZO) Thin Film Transistors

  • Seong, Sang-Yun;Han, Eon-Bin;Kim, Se-Yun;Jo, Gwang-Min;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.166-166
    • /
    • 2010
  • Recently, TFTs based on amorphous oxide semiconductors (AOSs) such as ZnO, InZnO, ZnSnO, GaZnO, TiOx, InGaZnO(IGZO), SnGaZnO, etc. have been attracting a grate deal of attention as potential alternatives to existing TFT technology to meet emerging technological demands where Si-based or organic electronics cannot provide a solution. Since, in 2003, Masuda et al. and Nomura et al. have reported on transparent TFTs using ZnO and IGZO as active layers, respectively, much efforts have been devoted to develop oxide TFTs using aforementioned amorphous oxide semiconductors as their active layers. In this thesis, I report on the performance of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer at room temperature. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium gallium zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium gallium zinc oxide was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 1.5V and an on/off ration of > $10^9$ operated as an n-type enhancement mode with saturation mobility with $9.06\;cm^2/V{\cdot}s$. The devices show optical transmittance above 80% in the visible range. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer were reported. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

Characterization of Morphology Controlled Fluorine-doped SnO2 Thin Films

  • An, Ha-Rim;An, Hye-Lan;Ahn, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.453.1-453.1
    • /
    • 2014
  • Fluorine-doped tin oxide (FTO), which is commonly used in dye-sensitized solar cells (DSSCs), is a promising material of transparent conducting oxides (TCOs) because of advantages such as high chemical stability, high resistance, high optical transparency (>80% at 550nm), and low electrical resistivity (${\sim}10-4{\Omega}{\cdot}cm$). Especially, dye-sensitized solar cells (DSSCs) have been actively studied since Gratzel's research group required FTO substrate as a charge collector. When FTO substrates are used in DSSCs, photo-injected electrons may experience recombination at interface between dye-bonded semiconductor oxides ($TiO_2$) on FTO substrate and the electrolyte. To solve these problems, one is that because recombination at FTO substrate cannot be neglected, thin $TiO_2$ layer on FTO substrate as a blocking layer was introduced. The other is to control the morphology of surface on FTO substrate to reduce a loss of electrons. The structural, electrical, and optical characteristics of morphology controlled-FTO thin films as TCO materials were analyzed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Hall Effect Measurement, and UV spectrophotometer. The performance of DSSCs fabricated with morphology controlled FTO substrates was performed using Power Conversion Efficiency (PCE). We will discuss these results in detail in Conference.

  • PDF

Mineral Chemistry of Cassiterite, Columbite, Tantalite and Associated Minerals from Soonkyoung Tin-bearing Pegmatite (순경(順鏡) 페그마타이트에서 산출(産出)되는 석석(錫石), 콜럼바이트, 탄탈라이트 및 수반광물(隨伴鑛物)에 대한 광물화학(鑛物化學))

  • Kim, Soo-Young;Moon, Hi-Soo;Park, No Young
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.327-339
    • /
    • 1989
  • Cassiterite, tantalite, columbite and tantalian rutile are found as accessory minerals in Soonkyoung tin-bearing pegmatites. These minerals occur as finely disseminated specks of up to micro-size in diameter and coarse grain size varying from 0.5-50mm in albite, muscovite and quartz assemblage. Cassiterite geneally shows a moderate to intense pleochroism, having a color brownish yellow to deep reddish brown. The substitution of $Ta^{+5}$, $Nb^{+5}$, $Ti^{+4}$ and Fe* for $Sn^{+4}$ in cassiterite ranges 0.01-0.10 mol%. The zoned cassiterite give a higher Ta/Nb ratios in margin than the ratios in core. This is due to the preferential $Ta^{+5}$ affinity to lower temperature during the crystallization of cassiterite. Tantalite-columbite and tantalian rutile occur in cassitertie with exsolution texture and/or infiltrate into the micro-fissures of cassiterite with micro quartz vein. The compositions of tantalite-columbite show the wide ranges of $Ta_2O_5$ : 14-46 wt.%, $Nb_2O_5$ : 60-28 wt. % and FeO*: 10.15 wt.%. The variation of chemical composition in tantalit-columbite exhibits the decreasing trends of $Mn^{+2}/M^{+2}+Fe^*$ with $Ta^{+5}/Ta^{+5}+Nb^{+5}$ increasing. These trends of vatiations indicate that the Ta/Nb fractionation are enhanced by higher Ta-complex activity in late stage of pegmatite consolidation and lower activity of F in agreements with the F-and Li-micas not to be developed in Soonkyoung tin-bearing pegmatite.

  • PDF

Monolithic 3D-IC 구현을 위한 In-Sn을 이용한 Low Temperature Eutectic Bonding 기술

  • Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.338-338
    • /
    • 2013
  • Monolithic three-dimensional integrated circuits (3D-ICs) 구현 시 bonding 과정에서 발생되는 aluminum (Al) 이나 copper (Cu) 등의 interconnect metal의 확산, 열적 스트레스, 결함의 발생, 도펀트 재분포와 같은 문제들을 피하기 위해서는 저온 공정이 필수적이다. 지금까지는 polymer 기반의 bonding이나 Cu/Cu와 같은 metal 기반의 bonding 등과 같은 저온 bonding 방법이 연구되어 왔다. 그러나 이와 같은 bonding 공정들은 공정 시 void와 같은 문제가 발생하거나 공정을 위한 특수한 장비가 필수적이다. 반면, 두 물질의 합금을 이용해 녹는점을 낮추는 eutectic bonding 공정은 저온에서 공정이 가능할 뿐만 아니라 void의 발생 없이 강한 bonding 강도를 얻을 수 있다. Aluminum-germanium (Al-Ge) 및 aluminum-indium (Al-In) 등의 조합이 eutectic bonding에 이용되어 각각 $424^{\circ}C$$454^{\circ}C$의 저온 공정을 성취하였으나 여전히 $400^{\circ}C$이상의 eutectic 온도로 인해 3D-ICs의 구현 시에는 적용이 불가능하다. 이러한 metal 조합들에 비해 indium (In)과 tin (Sn)은 각각 $156^{\circ}C$$232^{\circ}C$로 굉장히 낮은 녹는점을 가지고 있기 때문에 In-Sn 조합은 약 $120^{\circ}C$ 정도의 상당히 낮은eutectic 온도를 갖는다. 따라서 본 연구팀은 In-Sn 조합을 이용하여 $200^{\circ}C$ 이하에서monolithic 3D-IC 구현 시 사용될 eutectic bonding 공정을 개발하였다. 100 nm SiO2가 증착된 Si wafer 위에 50 nm Ti 및 410 nm In을 증착하고, 다른Si wafer 위에 50 nm Ti 및 500 nm Sn을 증착하였다. Ti는 adhesion 향상 및 diffusion barrier 역할을 위해 증착되었다. In과 Sn의 두께는 binary phase diagram을 통해 In-Sn의 eutectic 온도인 $120^{\circ}C$ 지점의 조성 비율인 48 at% Sn과 52 at% In에 해당되는 410 nm (In) 그리고 500 nm (Sn)로 결정되었다. Bonding은 Tbon-100 장비를 이용하여 $140^{\circ}C$, $170^{\circ}C$ 그리고 $200^{\circ}C$에서 2,000 N의 압력으로 진행되었으며 각각의 샘플들은 scanning electron microscope (SEM)을 통해 확인된 후, 접합 강도 테스트를 진행하였다. 추가로 bonding 층의 In 및 Sn 분포를 확인하기 위하여 Si wafer 위에 Ti/In/Sn/Ti를 차례로 증착시킨 뒤 bonding 조건과 같은 온도에서 열처리하고secondary ion mass spectrometry (SIMS) profile 분석을 시행하였다. 결론적으로 본 연구를 통하여 충분히 높은 접합 강도를 갖는 In-Sn eutectic bonding 공정을 $140^{\circ}C$의 낮은 공정온도에서 성공적으로 개발하였다.

  • PDF

Microwave Dielectric Properties of Ti-Te system Ceramics for Triplexer Filter

  • Choi, Eui-Sun;Lee, Moon-Woo;Lee, Sang-Hyun;Kang, Gu-Hong;Kang, Gap-Sul;Lee, Young-Hie
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.263-269
    • /
    • 2011
  • In this study, the compositions for the microwave dielectric materials were investigated to obtain the improved dielectric properties, the high temperature stability, and the sintering temperature of less than $900^{\circ}C$, which was necessary for cofiring with the internal conductor of silver. In addition, the dielectric sheets were prepared by the tape casting technique, after which the sheets were laminated and sintered. In this process, the optimum ratio of powder and binder, laminating pressure, temperature, and possibility for cofiring with the internal conductor were studied. Finally, multilayer chip treplexer filter for the 800-2,000 MHz range were fabricated, and the frequency characteristics of the triplexer filter were investigated. When the $0.6TiTe_3O_8-0.4MgTiO_3+3wt%SnO+7wt%H_3BO_3$ ceramics were sintered at $820^{\circ}C$ for 0.3 hours, the microwave dielectric properties of the dielectric constant of 29.91, quality factor of 33,000 GHz, and temperature coefficient of resonant frequency of -2.76 ppm/$^{\circ}C$ were obtained. Using the Advanced Design System (ADS) and High Frequency Structure Simulator (HFSS), the multilayer chip triplexer filter acting at the range of 800-2,000 MHz were simulated and manufactured. The manufactured triplexer filter had the excellent frequency properties in the CDAM800, GPS and PCS frequency regions, respectively.