• Title/Summary/Keyword: $TiO_2-SnO_2$

Search Result 257, Processing Time 0.03 seconds

Electrical properties of 0.05pb($Sn_{0.5}Sb_{0.5}O_3-xPbTiO_3-yPbZrO_3$ PZT System With variation Of PT/PZ (0.05pb($Sn_{0.5}Sb_{0.5}O_3-xPbTiO_3-yPbZrO_3$계에서 PT/PZ비 변화에 따른 전기적 특성)

  • 황학인;박준식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.589-598
    • /
    • 1997
  • The effects of PT/PZ ratio variations in a modified PZT system on crystal structure and electrical properties were studied. $0.05Pb(Sn_{0.5}Sb_{0.5})O_3+xPbTiO_3+yPbZrO_3$+0.4Wt% $MnO_2$(=0.55PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ ; x+y=0.95) systems with variations of PT/PZ from 0.50/0.45 to 0.l1/0.84 were sintered at $1250^{\circ}C$ for 2 hr, and then sintering density, crystal structure, dielctric, piezoelectric, pyroelectic and voltage responsity to infrared were investigated. Sintering density was increased from 7.52g/$\textrm {cm}^3$ to 7.82g/$\textrm {cm}^3$ with increasing PZ content. Dielectric constants at 1 KHz were decreased from 1147 to 193 with variation of PT/PZ from 0.50/0.45 to 0.l1/0.84 after poling of $4 KV_{DC}$/mm at $140^{\circ}C$ for 20 minutes. All Dielectric losses at 1 KHz were less than 1 % in all specimens. $K_{p}$ was increased near to 1 of PT/PZ, and maximun value of 48.2 % was .at 0.45/0.50. Pyroelectric coefficient of PT/PZ with 0.l1/0.84 was maximun value, 0.0541 C/$\m^2$K, and voltage responsity to infrared was 1.5 V.

  • PDF

Photoelectrochemical Behavior of Cu2O and Its Passivation Effect (산화구리의 광전기화학적 거동 특성)

  • Yun, Hongkwan;Hong, Soonhyun;Kim, Dojin;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recent industrialization has led to a high demand for the use of fossil fuels. Therefore, the need for producing hydrogen and its utilization is essential for a sustainable society. For an eco-friendly future technology, photoelectrochemical water splitting using solar energy has proven promising amongst many other candidates. With this technique, semiconductors can be used as photocatalysts to generate electrons by light absorption, resulting in the reduction of hydrogen ions. The photocatalysts must be chemically stable, economically inexpensive and be able to utilize a wide range of light. From this perspective, cuprous oxide($Cu_2O$) is a promising p-type semiconductor because of its appropriate band gap. However, a major hindrance to the use of $Cu_2O$ is its instability at the potential in which hydrogen ion is reduced. In this study, gold is used as a bottom electrode during electrodeposition to obtain a preferential growth along the (111) plane of $Cu_2O$ while imperfections of the $Cu_2O$ thin films are removed. This study investigates the photoelectrochemical properties of $Cu_2O$. However, severe photo-induced corrosion impedes the use of $Cu_2O$ as a photoelectrode. Two candidates, $TiO_2$ and $SnO_2$, are selected for the passivation layer on $Cu_2O$ by by considering the Pourbaix-diagram. $TiO_2$ and $SnO_2$ passivation layers are deposited by atomic layer deposition(ALD) and a sputtering process, respectively. The investigation of the photoelectrochemical properties confirmed that $SnO_2$ is a good passivation layer for $Cu_2O$.

Ferroelectric properties of $Pb[(Zr,Sn)Ti]NbO_3$ Thin Films by Annealing (열처리에 따른 $Pb[(Zr,Sn)Ti]NbO_3$ 박막의 강유전 특성)

  • 최우창;최혁환;이명교;권태하
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.24-27
    • /
    • 2000
  • Ferroelectric P $b_{0.99}$〔(Z $r_{0.6}$S $n_{0.4}$)$_{0.9}$ $Ti_{0.1}$$_{0.98}$N $b_{0.02}$ $O_3$(PNZST) thin films were deposited by a RF magnetron sputtering on (L $a_{0.5}$S $r_{0.5}$)Co $O_3$(LSCO)/Pt/Ti/ $SiO_2$/Si substrate using a PNZST target with excess PbO of 10 mole%. The thin films deposited at the substrate temperature of 500 $^{\circ}C$ were crystallized to a perovskite phase after rapid thermal annealing(RTA) The thin films annealed at 650 $^{\circ}C$ for 10 seconds in air exhibited the good crystal structures and ferroelectric properties. The remanent polarization and coercive field of the PNZST capacitor were about 20 $\mu$C/$\textrm{cm}^2$ and 50 kV/cm, respectively. The reduction of the polarization after 2.2$\times$10$^{9}$ switching cycles was less than 10 %.0 %.%.0 %.0 %.

  • PDF

Role of TiO2 Decoration on SnO2 Nanorods for Highly Sensitive and Selective Acetone Detection (TiO2장식을 통한 SnO2 nanorods의 CH3COCH3 감지 특성 개선)

  • Ji-Hyeong Lee;Woon-Hyun Jo;Heewon Lim;Jae-Hwan So;Ha-gyeong Bae;Jae Han Chung;Young-Seok Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.318-325
    • /
    • 2024
  • In this study, we fabricated TiO2-decorated SnO2 nanorods (TSNRs) via glancing-angle deposition to achieve highly sensitive and selective CH3COCH3 detection. The gas-sensing properties of the TSNRs were systematically investigated, and the optimal sensing performance was achieved at 350℃ by 2-nm-thick TSNRs. When the sensors were exposed to 50 ppm of various gases (CH3COCH3, C2H5OH, C5H8, CH4, and CO), the 2-nm-thick TSNRs demonstrated a 4.6-fold increase in response (Ra/Rg-1=134) to CH3COCH3 compared with bare SnO2 nanorods (Ra/Rg-1=29.5) and exhibited excellent selectivity. In a high-humid environment (relative humidity = 80%), the 2-nm-thick TSNRs indicated a low theoretical detection limit of ≈5.31 ppb for CH3COCH3. These results suggest the significant potential of the proposed sensor for use in Internet-of-Things applications, particularly under extreme environmental conditions.

Brazing characteristics of $ZrO_2$ and Ti-6Al-4V brazed joints with increasing temperature (브레이징 온도 변화에 따른 $ZrO_2$와 Ti-6Al-4V의 접합 특성)

  • Kee, Se-Ho;Park, Sang-Yoon;Heo, Young-Ku;Jung, Jae-Pil;Kim, Won-Joong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.169-175
    • /
    • 2012
  • Purpose: In this study, brazing characteristics of $ZrO_2$ and Ti-6Al-4V brazed joints with increasing temperature were investigated. Materials and methods: The sample size of the $ZrO_2$ was $3mm{\times}3mm{\times}3mm$ (thickness), and Ti-6Al-4V was $10mm(diameter){\times}5mm(thickness)$. The filler metal consisted of Ag-Cu-Sn-Ti was prepared in powder form. The brazing sample was heated in a vacuum furnace under $5{\times}10^{-6}$ torr atmosphere, while the brazing temperature was changed from 700 to $800^{\circ}C$ for 30 min. Results: The experimental results shows that brazed joint of $ZrO_2$ and Ti-6Al-4V occurred at $700-800^{\circ}C$. Brazed joint consisted of Ag-rich matrix and Cu-rich phase. A Cu-Ti intermetallic compounds and a Ti-Sn-Cu-Ag alloy were produced along the Ti-6Al-4V bonded interface. Thickness of the reacted layer along the Ti-6Al-4V bonded interface was increased with brazing temperature. Defect ratios of $ZrO_2$ and Ti-6Al-4V bonded interfaces decreased with brazing temperature. Conclusion: Thickness and defect ratio of brazed joints were decreased with increasing temperature. Zirconia was not wetting with filler metal, because the reaction between $ZrO_2$ and Ti did not occur enough.

Preparation of Zr0.7Sn0.3TiO4 Thin Films by Metal Organic Decomposition and Their Dielectric Properties (금속유기분해법을 사용한 Zr0.7Sn0.3TiO4 박막 제조 및 유전특성)

  • Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.311-316
    • /
    • 2010
  • $Zr_{0.7}Sn_{0.3}TiO_4$ (ZST) thin films were fabricated by metal-organic decomposition, and their dielectric properties were investigated in order to evaluate their potential use in passive capacitors for rf and analog/mixed signal integrated circuits. The ZST thin film annealed at the temperature of $800^{\circ}C$ showed a dielectric constant of 27.3 and a dielectric loss of 0.011. The capacitor using the ZST film had quadratic and linear voltage coefficient of capacitance (VCC) of -65 ppm/$V^2$ and -35 ppm/V at 100 kHz, respectively. It also exhibited a good temperature coefficient of capacitance (TCC) value of -32 ppm/$^{\circ}C$ at 100 kHz.

Microstructure and Dielectric Properties of Low Temperature Sintering (Ba0.86Ca0.14)(Ti0.85Zr0.12Sn0.03)O3 System Ceramics (저온소결 (Ba0.86Ca0.14)(Ti0.85Zr0.12Sn0.03)O3계 세라믹스의 미세구조와 유전 특성)

  • Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.404-407
    • /
    • 2016
  • In this study, to develop low temperature sintering capacitor composition ceramics with the good dielectric properties, $(Ba_{0.86}Ca_{0.14})(Ti_{0.85}Zr_{0.12}Sn_{0.03})O_3$ (BCTZ) ceramics were prepared by the conventional solid-state reaction method. The effects of $B_2O_3$ addition on the dielectric properties and microstructure was investigated. The XRD patterns demonstrated that all the specimens showed Perovskite phase, and secondary phases are indicated in the measurement range of XRD. And also, temperature coefficient of capacitance(TCC) of all the specimen sintered at $1,180^{\circ}C$ showed +3~-56% except for x=0.006. For all the specimens, observed one peak was tetragonal cubic difuse phase transition temperature(Tc), which is located in the vicinity of room temperature.

Effects of Bi(Mg1/2Sn1/2)O3 Modification on the Dielectric and Piezoelectric Properties of Bi1/2(Na0.8K0.2)1/2TiO3 Ceramics (Bi1/2(Na0.8K0.2)1/2TiO3 세라믹스의 유전 및 압전 특성에 대한 Bi(Mg1/2Sn1/2)O3 변성 효과)

  • Pham, Ky Nam;Dinh, Thi Hinh;Lee, Hyun-Young;Kong, Young-Min;Lee, Jae-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.266-271
    • /
    • 2012
  • The effect of $Bi(Mg_{1/2}Sn_{1/2})O_3$ (BMS) modification on the crystal structure, ferroelectric and piezoelectric properties of $Bi_{1/2}(Na_{0.8}K_{0.2})_{1/2}TiO_3$ (BNKT) ceramics has been investigated. The BMS-substitution induced a transition from a ferroelectric (FE) tetragonal to a nonpolar pseudocubic phase, leading to degradations in the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the electric-field-induced strain was significantly enhanced by the BMS substitution-induced phase transition and reached a highest value of $S_{max}/E_{max}$ = 633 pm/V under an applied electric field of 6 kV/mm when the BMS content reached 6 mol%. The abnormal enhancement in strain was attributed to the field-induced transition of the pseudocubic symmetry to other asymmetrical structure, which was not clarified in this work.