• Title/Summary/Keyword: $TiO_2$-CdS photocatalyst

Search Result 9, Processing Time 0.028 seconds

Photocatalayst and Decomposition Properties of TiO2 and TiO2-CdS Powders Prepared by Supercritical Fluid Method (초임계 유체법으로 제조한 TiO2 및 TiO2-CdS계 광촉매의 분해물성 연구)

  • 전일수;황수현;박상준;길현식;조승범;전명석;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.481-484
    • /
    • 2004
  • TiO$_2$ and TiO$_2$-CdS powders which were expected to be highly activated photocatalysts were prepared using supercritical fluid method (SCF). The prepared photocatalyst TiO$_2$ powders were crystalline of anatase and ultrafine spherical powders with large specific surface area. When photodecompositoion reaction was done with TiO$_2$ powders prepared by SCF as a photocatalyst in DCA (Dichloroactic Acid) solution, a hazardous organic compound, the photocatlyst, properties of TiO$_2$ powders prepared by SCF were better than that of commercial TiO$_2$ powders.

Photocatalytic Efficiency and Bandgap Property of the CdS Deposited TiO2 Photocatalysts (TiO2/CdS 복합광촉매의 밴드갭 에너지 특성과 광촉매 효율)

  • Lee, Jong-Ho;Heo, Sujeong;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.790-797
    • /
    • 2019
  • To improve photocatalytic performance, CdS nanoparticle deposited TiO2 nanotubular photocatalysts are synthesized. The TiO2 nanotube is fabricated by electrochemical anodization at a constant voltage of 60 V, and annealed at 500 for crystallization. The CdS nanoparticles on TiO2 nanotubes are synthesized by successive ionic layer adsorption and reaction method. The surface characteristics and photocurrent responses of TNT/CdS photocatalysts are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis spectrometer and LED light source installed potentiostat. The bandgaps of the CdS deposited TiO2 photocatalysts are gradually narrowed with increasing of amounts of deposited CdS nanoparticles, which enhances visible light absorption ability of composite photocatalysts. Enhanced photoelectrochemical performance is observed in the nanocomposite TiO2 photocatalyst. However, the maximum photocurrent response and dye degradation efficiency are observed for TNT/CdS30 photocatalyst. The excellent photocatalytic performance of TNT/CdS30 catalyst can be ascribed to the synergistic effects of its better absorption ability of visible light region and efficient charge transport process.

Preparation of TiO2 and TiO2-CdS Photocatalayst Using the Supercritical Fluid Method (초임계 유체법에 의한 TiO2 및 TiO2-CdS계 광촉매 제조에 관한 연구)

  • 김종하;박상준;황수현;정용진;전일수;조승범;전명석;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1220-1223
    • /
    • 2003
  • TiO$_2$ and TiO$_2$-CdS which were expected to be highly activated photocatalysts with semiconductor properties, were prepared using supercritical fluid method. The powders prepared by supercritical fluid were agglomerate foam in 2-3 ${\mu}{\textrm}{m}$ size and the primary particles of 20 nm were arranged in the powders. The powders which were prepared by supercritical fluid method were anatase phase without any heat treatment.

Photoelectrochemical and Hydrogen Production Characteristics of CdS-TiO2 Nanocomposite Photocatalysts Synthesized in Organic Solvent (유기용매상에서 제조된 수소제조용 CdS-TiO2 나노복합 광촉매의 특성 연구)

  • Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.224-232
    • /
    • 2002
  • CdS-$TiO_2$ nano-composite sol was prepared by the sol-gel method in organic solvents at room temperature and further hydrothermal treatment at various temperatures to control the physical properties of the primary particles. Again, CdS-$TiO_2$ composite particulate films were made by casting CdS-$TiO_2$ sols onto $F:SnO_2$ conducting glass and then heat-treatment at $400^{\circ}C$. Physical properties of these 61ms were further controlled by the surface treatment with $TiCl_4$, aqueous solution. The photo currents and hydrogen production rates measured under the experimental conditions varied according to the $CdS/[CdS+TiO_2]$ mole ratio and the mixed-sol preparation method. For $CdS-TiO_2$ composite sols prepared in IPA, CdS particles were homogeneously surrounded by $TiO_2$ particles. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$. It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

Effect of Surface Treatment of CdS-TiO2 Composite Photocatalysts with Film Type on Hydrogen Production (수소제조에 관한 박막형 CdS-TiO2 복합 광촉매계의 표면처리 효과)

  • Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • CdS and $TiO_2$ nanoparticles were made by the precipitation method and sol-gel method, respectively, and they were mixed mechanically and then treated with the hydrothermal processing. CdS-$TiO_2$ composite particulate films were thus prepared by casting CdS-$TiO_2$ mixed sol onto $SnO_2$ conducting glass and a subsequent heat-treatment at $400^{\circ}C$. Again, the physico-chemical and photoelectrochemical properties of these films were controlled by the surface treatment with $TiCl_4$ aqueous solution. The photocurrents and the hydrogen production rates measured under the present experimental conditions varied in the range of $3.5{\sim}4.5mA/cm^2$ and $0.3{\sim}1.8cc/cm^2$-hr, respectively, and showed the maximum values at the $CdS/[CdS+TiO_2]$ mole ratio of 0.2. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, Probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$ It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

CdS-Titania-Nanotube Composite Films for Photocatalytic Hydrogen Production (CdS/Titania-나노튜브 복합 막을 이용한 광촉매적 수소제조)

  • Lee, Hyun-Mi;So, Won-Wook;Baeg, Jin-Ook;Kong, Ki-Jeong;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.230-237
    • /
    • 2007
  • Titania nanotube(TiNT) and CdS sol were synthesized by hydrothermal reaction under strongly basic condition and by precipitation reaction of $Cd(N0_3)_2$ and $Na_2S$ aqueous solutions, respectively. After preparing a series of CdS-TiNT composite films on $F:SnO_2$ conducting glass with variation of the mole ratio (r) of TiNT/(CdS+TiNT), their visible light absorption, photocatalytic activities for hydrogen production, and the photocurrent generation were examined. In general, this CdS-TiNT series showed lower photocatalytic activities and photocurrent generation under Xe light irradiation compared to their counterparts, i.e., CdS-$TiO_2$ particulate series. It appeared that TiNTs are not so effective photocatalyic material in spite of their larger specific surface areas compared to $TiO_2$ nanoparticles, because they indicate a poor crystallinity and less intimate interaction or contact with CdS particles owing to the tubular morphology and an easy agglomeration among themselves.

Photodegradation of Halogen Derivatives of Aliphatic Hydrocarbon in Aqueous Photocatalytic Suspensions (지방족 탄화수소의 할로겐 유도체 수용액의 광촉매-광분해)

  • Jun, Jin;Jung, Hak-Jin;Kim, Hae-Jin;Kim, Sam-Hyeok
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.75-88
    • /
    • 1997
  • The rates of photodegradation, reactivities, and mechanisms of photooxidation for the aqueous solution containing with halogen derivatives of aliphatic hydrocarbons have been discussed with respect to the kinds of photocatalysts, concentration of photocatalytlc suspensions, strength of radiant power, time of illumination, changes of pH of substrate solution, wavelength of radiation, and pressure of oxygen gas saturated In the solution. These aqueous solutions suspended with 0.5 $gL^{-1}$ $TiO_2$ powder have been photodecomposed in the range of 100 and 93.8% per 1 hour if it is illuminated with wavelength (λ $\geq$ 300nm) produced from Xe-lamp(450W). The photocatalytic abilities have been increased In the order of $Fe_2O_3$ < CdS < $CeO_2$ < Y_2O_3$ <$TiO_2$, and rates of photodegradation for the solution have maldmum values in the condition of pH 6 ~ 8 and 3 psi-$O_2$ gL^{-1}$. These rates for the Photoolddation Per 1 hour were dependent on the size of molecular weight and chemical bonding for organic halogen compounds and the rates of photodegadation were increased in the order of $C_2H_5Br$ < CH_2Br_2$ < C_5H_11Cl C_2H_4Cl_2$ < tracts-$C_2H_2Cl_2$ < cis-C_2H_2Cl_2$ The T_{1/2}$ and t99% for these solutions were 5~21 and 40~90 minutes. respectively, and these values were coincided with Initial reaction kinetics(ro). It was found that reaction of photodegradation has the pseudo first-order kinetics controlled by the amount of $h^+_{VB}$ diffused from a surface of photocatalysts.

  • PDF

Proteomic Analysis and Growth Responses of Rice with Different Levels of Titanium Dioxide and UV-B (이산화티탄과 UV-B 수준에 따른 벼 생육과 프로테옴 해석)

  • Hong, Seung-Chang;Shin, Pyung-Gyun;Chang, An-Cheol;Lee, Ki-Sang;Lee, Chul-Won;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.69-80
    • /
    • 2007
  • Among the photoactive semiconductors such as $TiO_2,\;ZnO,\;Fe_2O_3,\;WO_3,\;and\;CdSe,\;TiO_2$ is the most widely used as photocatalyst in different media, because of its lack of toxicity and stability. In this study, the effects of titanium dioxide were investigated to obtain the information of physiological change in rice plant. Light-adapted Chlorophyll flourescence index decreased and relative electron transport rate of rice leaves was activated by titanium dioxide under $2,400\;{\mu}mol\;m^{-2}\;s^{-1}$ PAR (Photosynthetic active radiation). Relative electron transport rate of rice leaf treated with titanium dioxide 10 ppm was high in order of $2,400\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR,\;2,200\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR,\;450\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR$ and titanium dioxide 10 ppm (45.1%), control (32.4%), diuron 10 ppm (15.3%) under $2,400\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR$. Titanium dioxide increased photosynthesis of the rice leaf under $13.6\;KJ\;m^{-2}\;day^{-1}$ UV-B only. With titanium dioxide 20 ppm, reduced UV-B ($0.15\;KJ\;m^{-2}\;day^{-1}$) intensity changed the induction of proteins and twenty-five proteins were identified. Among them, seventy proteins were up-regulated, four proteins were down-regulated and four proteins were newly synthesized. Function of these proteins was related to photosynthesis (52%), carbohydrate metabolism (4%), stress/defense (8%), secondary metabolism (4%), energy/electron transport (4%), and miscellaneous (28%).