• 제목/요약/키워드: $TiO_2$ nanoparticle

검색결과 151건 처리시간 0.025초

에폭시수지의 물성에 미치는 나노입자의 영향 (Nanoparticle effect on the mechanical properties of polymer composites)

  • 문창권;김부안
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.12-16
    • /
    • 2015
  • $TiO_2$ nanoparticle can be used for the improvement of performance of the epoxy resin composites. In this study, the effect of the size of $TiO_2$ nanoparticle on the mechanical properties for the epoxy resin composites was investigated. The size of $TiO_2$ nanoparticle was easily controlled by heat treatment. The heat treatment of $TiO_2$ nanoparticle was conducted between $700^{\circ}C$ and $900^{\circ}C$. The obtained size of $TiO_2$ nanoparticle was 20 nm, 100 nm and 200 nm respectively. As the diameter of $TiO_2$ nanoparticle is smaller, the epoxy resin composite specimen showed higher tensile strength. It was also found that Vickers hardness of epoxy resin was increased by the addition of $TiO_2$ nanoparticle. But the size of $TiO_2$ nanoparticle did not strongly affected to the Vickers hardness of this material. The fracture surface of epoxy resin showed clear difference by the size of $TiO_2$ nanoparticlet.

PCL/TiO2 Nanoparticle 3차원 지지체 제조 및 특성 평가 (Fabrication and Characterization of PCL/TiO2 Nanoparticle 3D Scaffold)

  • 김정호;이옥주;;주형우;문보미;박현정;박찬흠
    • 폴리머
    • /
    • 제38권2호
    • /
    • pp.150-155
    • /
    • 2014
  • Polycaprolactone(PCL)은 생분해성 고분자로 인장강도, 신장률, 충격강도 등의 기계적 물성이 우수하다. $TiO_2$ (titanium dioxide) nanoparticle은 친수성으로 밀도가 높고 생체적합성이 우수하다. 본 연구에서는 PCL과 $TiO_2$(titanium dioxide) nanoparticle을 이용하여 salt-leaching방법으로 3차원 다공성 지지체를 제작하였다. 제작한 지지체를 FESEM, FTIR, TGA, 압축강도 측정 등을 통해 물성을 분석하였다. $TiO_2$ nanoparticle에 의해 물흡수도와 팽윤도는 감소하였으나 압축강도는 증가하였다. CCK-8 assay를 통해 세포의 증식률을 확인한 결과, $TiO_2$ nanoparticle에 의한 세포 독성은 없는 것으로 확인되었다. 이러한 연구결과는 PCL/$TiO_2$ nanoparticle 지지체의 생체재료로 사용가능성을 제시하였다.

에폭시수지 복합재료의 기계적.열적 성질에 대한 $TiO_2$ 나노입자의 영향 (Effect of $TiO_2$ Nanoparticle on the Mechanical and Thermal Properties of Epoxy Resin Composites)

  • 문용재;최정영;김부안;문창권
    • 동력기계공학회지
    • /
    • 제14권4호
    • /
    • pp.68-75
    • /
    • 2010
  • The effect of dispersion agent, the content and size of nanoparticle on the mechanical and thermal properties has been investigated in $TiO_2$ nanoparticle/epoxy resin composites(nanocomposites). The weight fraction of fabricated nanocomposites were 0, 1, 3, 5%, respectively. The glass transition temperature was lower than pure epoxy resin and decreased with the increasing of nanopaticle content. This is considered that the cross link of epoxy resin during solidification was hindered by the presence of nanoparticles. Nanocomposites of 3wt% content with dispersion agent showed the best tensile strength. The tensile strength of 20㎚ $TiO_2$ nanocomposites were higher than one of 200nm $TiO_2$ nanocomposites.

Enhancing photoluminescence of Au - TiO2 nanoparticles using Drude model

  • Dang, Diem Thi-Xuan;Vu, Thi Hanh Thu
    • 전기전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.288-296
    • /
    • 2017
  • The enhancement of photoluminescence of Au-$TiO_2$ nanoparticles by surface plasmon resonance has been studied extensively by experiment in recent years. For the purpose of optimizing the photoluminescence property of Au-$TiO_2$ nanoparticles, the manufacturing parameters related to the Au nanoparticles and $TiO_2$ nanoparticles need to be considered. In this paper, Drude model and Maier's effective volume method are used to analyze the variation of the metal nanoparticle radius, separation between metal nanoparticle and dielectric molecule, and total absorption cross-section with original radiative efficiency on the photoluminescence property of Au-$TiO_2$ nanoparticles. The results show that to obtain the optimized enhancement factor for photoluminescence process, the size of Au nanoparticle is about 13 - 20 nm, the separation between Au nanoparticle and $TiO_2$ molecule is about 5 -15 nm, the total absorption cross-section of $TiO_2$ molecules is about $1-100nm^2$ and the original radiative efficiency of $TiO_2$ molecule is weak about 0.001- 0.1. With these fabrication parameters, the photoluminescence property of Au-$TiO_2$ nanoparticles can be enhanced several thousand times compared to traditional $TiO_2$ nanoparticles.

Bond Strength of TiO2 Coatings onto FTO Glass for a Dye-sensitized Solar Cell

  • Lee, Deuk Yong;Kim, Jin-Tae;Kim, Young-Hun;Lee, In-Kyu;Lee, Myung-Hyun;Kim, Bae-Yeon
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.395-401
    • /
    • 2012
  • The bond strength of three types of $TiO_2$ coatings onto fluorine-doped $SnO_2$ (FTO) glass was investigated with the aid of a tape test according to ASTM D 3359-95. Transmittance was then measured using an UV-vis spectrophotometer in the wavelength range of 300 nm to 800 nm to evaluate the extent of adhesion of $TiO_2$ nanorods/nanoparticles on FTO glass. A sharp interface between the coating layer and the substrate was observed for single $TiO_2$ coating ($TiO_2$ nanorods/FTO glass), which may be detrimental to the bonding strength. In multicoating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/$TiO_2$ nanoparticle/FTO glass), the tape test was not performed due to severe peeling-off prior to the test. On the other hand, the dual coating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/FTO glass) showed minimum variation of transmittance (4%) after the test, suggesting that the topcoat adheres well with the FTO substrate due to the presence of the $TiO_2$ nanoparticle buffer layer. The use of a $TiO_2$ nanorod electrode layer with good adhesion may be attributed to the excellent dye sensitized solar cell performance.

수생태계에서 ZnO, TiO2나노입자 응집체가 물벼룩(Daphnia magna)에 미치는 영향 (Effect of Daphnia magna on Nanoparticle(ZnO, TiO2) Aggregates in Aqueous System)

  • 이하늘;이병우;박찬일;김무찬
    • 해양환경안전학회지
    • /
    • 제20권5호
    • /
    • pp.468-473
    • /
    • 2014
  • 본 연구에서는 정제되지 않은 ZnO 및 $TiO_2$나노입자를 M4배지에 노출시켜 두 나노입자가 어느 정도 크기의 응집체로 변화되는지를 살펴보고 또한 두 나노입자가 수생태계 생물종인 Daphnia magna에 어떠한 영향을 초래하는지 유영저해 및 폐사율을 통해 살펴보았다. ZnO 및 $TiO_2$나노입자의 분말상태 크기는 각각 20 nm와 40 nm였지만, M4배지에서는 1333 nm와 1628 nm로 약 40~70배의 크기로 응집되었다. 유영저해의 경우 ZnO와 $TiO_2$나노입자 모두 시간 및 농도가 높아질수록 D.magna가 유영하는데 영향을 미친 것으로 나타났으며, 특히 ZnO나노입자가 $TiO_2$나노입자에 비해 더 큰 영향을 미치는 것으로 나타났다. 폐사율의 경우 ZnO나노입자에서는 시간 및 농도가 높아질수록 폐사되는 비율이 높았으며, $TiO_2$나노입자에서는 72시간이 경과된 시점의 10 ppm 이상의 농도에서 폐사하는 것으로 관찰되었다. 이는 나노입자가 해양에 유입됨으로 인해 원래의 크기에 비해 응집되어 증가되어진다는 것을 알 수 있으며, 또한 그 응집체로 인해 수생태계 생물에 영향을 주는 것으로 나타났다.

염료감응형 태양전지의 광전극 적용을 위한 $TiO_2$ nanoparticle 특성 분석 (Study on $TiO_2$ nanoparticle for Photoelectrode in Dye-sensitized Solar Cell)

  • 조슬기;이경주;송상우;박재호;문병무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) have recently been developed as a cost-effective photovoltaic system due to their low-cost materials and facile processing. The production of DSSC involves chemical and thermal processes but no vacuum is involved. Therefore, DSSC can be fabricated without using expensive equipment. The use of dyes and nanocrystalline $TiO_2$ is one of the most promising approaches to realize both high performance and low cost. The efficiency of the DSSC changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. Nanocrystalline $TiO_2$ materials have been widely used as a photo catalyst and an electron collector in DSSC. Front electrode in DSSC are required to have an extremely high porosity and surface area such that the dyes can be sufficiently adsorbed and be electronically interconnected, resulting in the efficient generation of photocurrent within cells. In this study, DSSC were fabricated by an screen printing for the $TiO_2$ thin film. $TiO_2$ nanoparticles characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM) and scanning auger microscopy (SAM) and zeta potential and electrochemical impedance spectroscopy(EIS).In addition, DSSC module was modeled and simulated using the SILVACO TCAD software program. Improve the efficiency of DSSC, the effect of $TiO_2$ thin film thickness and $TiO_2$ nanoparticle size was investigated by SILVACO TCAD software program.

  • PDF

Toxicoproteomic identification of $TiO_2$ nanoparticle-induced protein expression changes in mouse brain

  • Jeon, Yu-Mi;Park, Seul-Ki;Lee, Mi-Young
    • Animal cells and systems
    • /
    • 제15권2호
    • /
    • pp.107-114
    • /
    • 2011
  • A proteomic analysis of the proteins in mouse brain that were differentially expressed in response to $TiO_2$ nanoparticles was conducted to better understand the molecular mechanism of $TiO_2$ nanoparticle-induced brain toxicity at the protein level. A total of 990 proteins from mouse brain were resolved by two-dimensional gel electrophoresis. A comparative proteomic analysis revealed that the expression levels of 11 proteins were changed by more than 2-fold in response to $TiO_2$ nanoparticles: eight proteins were upregulated and three were downregulated by $TiO_2$ nanoparticles. In addition, the activities of several antioxidative enzymes and acetylcholine esterase were reduced in $TiO_2$ nanoparticle-exposed mouse brain. The protein profile alterations seem to be due to an indirect effect of $TiO_2$ nanoparticles, because $TiO_2$ nanoparticles were not detected in the brain in this investigation.