• Title/Summary/Keyword: $TiO_2$ bead

Search Result 44, Processing Time 0.022 seconds

Hybrid Water Treatment of Carbon Fiber Ultrafiltration Membrane and Polypropylene Beads Coated Photocatalyst: Effect of Organic Materials in Water Back-flushing (탄소섬유 한외여과막 및 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 물 역세척 시 유기물의 영향)

  • Park, Jin Yong;Kim, Mi Hyang
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.415-423
    • /
    • 2012
  • For hybrid water treatment of carbon fiber ultrafiltration and photocatalyst, we used the hybrid module that was composed of photocatalyst packing between tubular membrane outside and module inside. Photocatalyst was PP (polypropylene) bead coated with $TiO_2$ powder by CVD (chemical vapor deposition) process. Water back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling for modified solution, which was prepared with humic acid and kaolin. Resistance of membrane fouling ($R_f$) decreased as humic acid concentration changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L, which was the same with the previous results. Then, treatment efficiencies of turbidity and humic acid were above 98.9% and 88.7%, respectively, those did not depend on the humic acid concentration. However, the treatment efficiency of humic acid increased a little as the humic acid concentration increased in the previous results.

An Analysis of the Characteristics of Glass Beads from the Joseon Dynasty Using Non-destructive Analysis (비파괴 분석을 활용한 조선시대 유리구슬의 특성 분석)

  • Lee Sujin;Kim Gyuho
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.71-88
    • /
    • 2023
  • This paper examined the visible characteristics and chemical composition of glass beads from the Joseon Dynasty as well as the associations thereof. It also explored the characteristics and uses of glass beads by region. This study covered a total of 1,819 pieces excavated from 25 locations in the Gyeonggi, Chungcheong, and Gyeongsang regions, of which 537 pieces were analyzed for their chemical composition. Glass beads of the Joseon Dynasty take a variety of shapes such as a Round, Coil, Floral, Segmented, Flat, Oval, and Calabash. Colors vary from shades of brown (brown, lemon yellow) and shades of blue (Bluish-Green, greenish-Blue, Purple-Blue) to shades of white (colorless, white) and shades of green (Green, Greenish-Blue, Greenish-Brown). Brown accounts for the largest percentage, followed by Bluish-Green, greenish-Blue. It was identified that Drawing technique was the most common glass bead production technique of the Joseon Dynasty. Potassium oxide (K2O) was the most common flux agent for glass beads, while the potash glass and mixed alkali glass groups account for the largest quantity. The choice of stabilizers depended on the type of flux agents used, but the most common were calcium oxide (CaO) and aluminum oxide (Al2O3). The potash glass and potash lead glass groups are high in CaO and low in Al2O3, the mixed alkali glass group is high in CaO, and the lead glass group is low in CaO. In terms of the association between color and shape, most of the beads with shade of brown and blue have round shapes of brown and blue have spherical shapes, while the coil shape is prominent in blue beads. A high percentage of green and colorless beads also take the shape of a coil, while white beads in general have a floral shape. In terms of the association between shape and chemical composition, round, floral and segmented shapes account for a high percentage of the potash glass group, while coil and flat shapes are common in the mixed alkali glass group. This paper also analyzed the colorants for each color based on the association between color and chemical composition. Iron (Fe) was used as the colorant for brown and white, and titanium (Ti) and iron were used for light yellow. Purple-Blue was produced by by cobalt (Co), and greenish-Blue, Bluish-Green, green, Greenish-Blue were produced by iron and copper (Cu). Colorless beads had a generally low colorant content.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 -)

  • Kim, Jong-Do;Kil, Byung-Lea;Kwak, Myung-Sub;Song, Moo-Keun
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.

Recirculating Integrated System for the Treatment of Authentic Integrated-textile-dyeing Wastewater from Dyeing Industrial Complex (염색산업단지 종합폐수처리용 재순환 통합시스템)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.837-845
    • /
    • 2017
  • A recirculating integrated system composed of a fluidized biofilter filled with waste-tire crumb media fixed with return sludge from wastewater treatment facility of D dyeing industrial center, and a UV/photocatalytic reactor packed with calcined $TiO_2$ coated-glass beads as photocatalyst-support, was constructed and was run to treat authentic textile-dyeing wastewater from D-dyeing industrial center, which was mixed with an alkaline polyester-weight-reducing wastewater and a wastewater from sizing process. As a result, its total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were ca. 81% and 55%, respectively. The synergy effect of the recirculating integrated system to enhance total removal efficiency(RE(tot)) of $COD_{cr}$ and colors were evaluated at most ca. 7% and 3%, respectively. The fluidized biofilter and the UV/photocatalytic reactor were responsible for ca. 94% and 6% of the total $COD_{cr}$ removal efficiency, respectively, and were also responsible for ca. 86% and 14% of the total color-removal efficiency, respectively. Thus, the degree of the UV/photocatalytic reactor-unit process's contribution to RE(tot) of color, was about 2.4 times of that to RE(tot) of $COD_{cr}$. Therefore, the UV/photocatalytic reactor facilitated the more effective elimination of colors by breaking down the chemical bonds oriented from colors of dyes such as azo-bond, than $COD_{cr}$. In addition, the effect of the removal efficiency of each unit process(i.e., the fluidized biofilter or the UV/photocatalytic reactor) of the recirculating integrated system on RE(tot) of $COD_{cr}$ and colors, was analysed by establishing its model equation with an analytic correlation.