• Title/Summary/Keyword: $Theta^*$

Search Result 2,013, Processing Time 0.03 seconds

Genetic Diversity and Spatial Structure of Symplocarpus renifolius on Mt. Cheonma, Korea

  • Jeong, Ji-Hee;Park, Yu-Jin;Kim, Zin-Suh
    • Korean Journal of Plant Resources
    • /
    • v.20 no.6
    • /
    • pp.530-539
    • /
    • 2007
  • Genetic variation and structure of 9 subpopulations of Symplocarpus renifolius Schott ex Tzvelev on Mt. Cheonma, in Korea, were determined via starch-gel electrophoresis. The genetic diversity at 10 loci for 8 isozymes ($P_{99}=66%,\;A=2.26,\;H_o=0.212,\;H_e=0.230$) was found to be considerably higher than that seen in other long-lived perennial plants. On the whole, the genotype frequencies were in accordance with Hardy-Weinberg expectations. Approximately 5%($\theta=0.049$) of the total variability was among subpopulations. The high levels of observed genetic diversity in S. renifolius were attributed to a universal outcrossing system and other specific factors like differences in age classes and widely scattered individuals around the main distribution. Heterozygosity was highest at a mid-range of elevation($450m{\sim}600m$). The lowest heterozygosity at lower elevation was attributed to the possible origin of seeds transported by water from upstream regions during the monsoon season. Spatial structure in a subpopulation evidenced a strong autocorrelation between closer individuals within $3{\sim}4m$ of distance. This was assumed to be attributable to the restricted seed dispersal characteristics of S. renifolius. In accordance with the findings generated in this study, some implications regarding the conservation of S. renifolius at the Mt. Cheonma were also presented.

High frequency and high power PECVD를 이용한 thin film solar cell용 microcrystalline Si 증착

  • Lee, Seung-Mu;Kim, Yeong-Seok;Han, Mun-Hyeong;Byeon, Dong-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.2-52.2
    • /
    • 2009
  • Si 박막형 solar cell은 Si 결정형 solar cell대비 cost 및 대면적화 측면에서 장점을 가지고 있다. 그러나 amorphous Si의 경우 light soacking에 의한 열화 문제가 있고, microcrystalline Si의 경우 요구되는 효율 확보를 위하여 $1.5{\mu}m$ 이상 두께가 필요하며, 증착율이 $5{\AA}/sec$.이하인 단점이 있다. 본 연구에서는 high deposition rate로 microcrystalline Si를 증착하기 위하여 high frequency, high power PECVD를 이용하였으며, RF power, 증착온도, H2/SiH4 ratio의 3인자를 3수준으로 변화시킨 완전요인배치 실험을 실시하였다. 실험결과 증착율은 $8.0{\AA}/sec.{\sim}52.8{\AA}/sec$ 범위, crystalline fraction은 0%~83.3% 범위의 결과를 얻었으며, 결정이 형성된 조건에서는 XRD분석결과 $2\theta=28.5$ 및 47.5에서 Si (111), (220) peak을 확인할 수 있었다. Surface Profilometer 를 이용한 surface roughness의 경우 $6.3{\AA}\sim32.4{\AA}$ 범위의 결과를 얻었으며, crystalline Portion이 높을수록 surface roughness가 증가함을 알 수 있었다.

  • PDF

Characteristics of Pd-MIS devices on hydrogen gas sensing (Pd-MIS 소자의 수소가스 검지 특성)

  • Yi, Cheal W.;Cha, Won I.;Shin, Chee B.;Yun, Kyung S.;Ju, Jeh B.
    • Journal of Hydrogen and New Energy
    • /
    • v.3 no.2
    • /
    • pp.17-24
    • /
    • 1992
  • Hydrogen gas sensors were fabricated after the form of metal/insulator/semiconductor(MIS) structure on a p-type silicon wafer and a insulating layer (silicon dioxide) thickness was changed from $500{\AA}$ to $5000{\AA}$. Their electrical properties were investigated with the variation of the hydrogen gas concentration at room temperature. At the applied forward bias of lV to both ends of Pd-MIS sensors the current was decreased logarithmically with the increase of hydrogen concentration in air. In the case of a thin $SiO_2$ layered ($500{\AA}$) sensor the current ratio was decreased to 25 % at 1 % of hydrogen concentration in air and 50% for a thick $SiO_2$ layered ($5000{\AA}$) sensor. And the response time of the thick insulating layered sensor to 1% hydrogen containing air was about 50 seconds and regeneration time was 2.5 minutes. When a 0.5mA current was appied to the thick insulating layered sensor the maximun voltage shift was calculated to 0.8V in the case of ${\theta}$ = 1 and the Pd surface coverage of hydrogen was increased logarithmically with hydrogen partial pressure.

  • PDF

EEG Signal Analysis on Correlation between Mathematical Task Type and Musical Stimuli (음악적 자극과 수학적 과제 유형과의 상관관계에 대한 뇌파분석)

  • Jung, Yu-Ra;Jang, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.773-778
    • /
    • 2020
  • In this paper, we analyzed the effects of musical stimuli on humans in performing mathematical tasks through EEG measurements. The musical stimuli were divided into preferred music and non-preferred music, and mathematical tasks were divided into memorization task and procedure task. The data measured in the EEG experiments was divided into frequency bands of Theta, SMR, and Mid-beta because of the concentration. In our results, preferred music causes more positive emotional response than no music and non-preferred music regardless of the type of mathematical task.

The Thermal Behavior of Transformation by Simultaneous $\alpha$-$Al_2O_3$ Seed Addition on the Al-Sec-Butoxide Hydrolysis (Al-Sec-Butoxide의 가수분해시에 있어서 $\alpha$-$Al_2O_3$종의 동시첨가에 의한 열적 전이거동)

  • 김창은;이해욱;최진관;김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.808-816
    • /
    • 1990
  • The thermal behavior of transformation and characteristics of seeded sample powders prepared by simultaneous $\alpha$-Al2O3 seed addition with water on the Al-sec-butoxide hydrolysis were studied. $\alpha$-Al2O3 seed particles are shown to act as nuclei for transformation of $\theta$-to $\alpha$-Al2O3 and to result in an increase in thetransformation kinetics and lowering of the transformation temperature by as much as 143$^{\circ}C$. Simultaneous seed addition on the hydrolysis resulted in uniform dispersin and creation of nucleation site on seed surface and only 0.1wt% seeding lowered the transformation temperature by as much as 115$^{\circ}C$. For 3wt% seed addition, $\alpha$-Al2O3 single phase was obtained at 95$0^{\circ}C$ for 100 minutes and the specific surface area of products were lowered to 11.9$m^2$/g as compared with that of $\alpha$-Al2O3 powder prepared without seed at 115$0^{\circ}C$ ; 15.1$m^2$/g due to depression of vermicular structure growth.

  • PDF

Characterization of 3C-SiC grown on Si(100) wafer (Si(100) 기판상에 성장된 3C-SiC의 특성)

  • 나경일;정연식;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.533-536
    • /
    • 2001
  • Single crystal cubic silicon carbide(3C-SiC) thin film were deposited on Si(100) substrate up to a thickness of 4.3 $\mu\textrm{m}$ by APCVD(atmospheric pressure chemical vapor deposition) method using hexamethyildisilane(HMDS) at 1350$^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like. The growth rate of the 3C-SiC films was 4.3 $\mu\textrm{m}$/hr. The 3C-SiC epitaxical layers on Si(100) were characterized by XRD(X-ray diffraction), raman scattering and RHEED(reflection high-energy electron diffraction), respectively The 3C-SiC distinct phonons of TO(transverse optical) near 796 cm$\^$-1/ and LO(longitudinal optical) near 974${\pm}$1 cm$\^$-1/ were recorded by raman scattering measurement. The deposition films were identified as the single crystal 3C-SiC phase by XRD spectra(2$\theta$=41.5$^{\circ}$). Also, with increase of films thickness, RHEED patterns gradually changed from a spot pattern to a streak pattern

  • PDF

The structural and dielectric properties of the $BaTiO_{3}+xNb_{2}O_{5}$ ceramics ($BaTiO_{3}+xNb_{2}O_{5}$ 세라믹스의 구조 및 유전특성)

  • 이상철;류기원;이성갑;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.426-429
    • /
    • 2001
  • The BaTiO$_3$+xNb$_2$O$_{5}$[x=6,8 , 10wt%] ceramics were prepared by conventional mixed oxide method. The structural properties of the BaTiO$_3$+xNb$_2$O$_{5}$ ceramics with the sintering temperature and addition of Nb$_2$O$_{5}$ were investigated by XRD and SEM. Increasing the sintering temperature, the 2$\theta$ value of BT (110) peak was shifted to the lower degree and intensity of the BN (310) peak was increased. Increasing the addition of Nb$_2$O$_{5}$, the intensity of BN (100) Peak was decreased and BN (310), (110) peaks were increased. The grain size of the BaTiO$_3$+Nb$_2$O$_{5}$ ceramics sintered at 135$0^{\circ}C$ were almost uniform. In the BaTiO$_3$+Nb$_2$O$_{5}$ ceramics sintered at 135$0^{\circ}C$, the dielectric constant and dielectric loss were 5424, 0.02 respectively.espectively.

  • PDF

Crystal Characteristics of 3C-SiC Grown on Si(100) Wafers (Si(100)기판상에 성장된 3C-SiC의 결정 특성)

  • Chung, Yun-Sik;Ryu, Ji-Goo;Seon, Joo-Heon;Chung, Soo-Yong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.30-34
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) wafers up to a thickness of 4.3 ${\mu}m$ by APCVD method using HMDS(hexamethyldisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was 4.3 ${\mu}m$/hr. The 3C-SiC epitaxial films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near 796 $cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The heteroepitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$).

  • PDF

Fabrication of Photonic Quasicrystals using Multiple-exposure Holographic Method (다중-노출 홀로그라피 방법을 이용한 광자준결정 제작)

  • Yun, Sang-Don;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.829-834
    • /
    • 2008
  • Two-dimensional photonic quasicrystal (PQCs) template patterns have been fabricated on a 1.1 ${\mu}m$-thick DMI-150 photoresist using a multiple-exposure holographic method. A 442-nm HeCd laser was utilized as a light source and the holographic exposure was carried out at a fixed angle of ${\theta}$ = 6$^{\circ}$. After the first holographic exposure, the sample was rotated to a proper angle and the second exposure was performed to the same manner. This exposure process was repeated n/2 times to obtain n-fold symmetric PQC patterns and then the sample was developed. The diffraction patterns of the fabricated PQC template were observed using a 632.8-nm HeNe laser. The fabricated PQCs exhibited 8, 10 and 12-fold rotational symmetry, which was in a good agreement with the interference simulation results. In addition, the diffraction patterns with n-rotation symmetry were observed for the corresponding n-fold PQCs. We believe that the multiple-exposure holography is a good method to fabricate the mesoscale PQCs with a high rotational symmetry.

Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics (CMOS 공정에 적합한 AlN 압전 마이크로 발전기의 제작 및 특성)

  • Chung, Gwiy-Sang;Lee, Byung-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.209-213
    • /
    • 2010
  • This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.