• Title/Summary/Keyword: $T_2$ contrast

Search Result 1,027, Processing Time 0.026 seconds

Effects of CT Contrast Medium on the Relaxation Rate of MR Contrast Medium (CT 조영제가 MR 조영제의 이완율에 미치는 영향)

  • Kwon, Soon-Yong;Kang, Chung-Hwan;Jeong, Hyeon Keum;Park, Jin Seo;Kim, Seong-Ho
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.103-107
    • /
    • 2018
  • In MR, the iodine CT contrast medium reduces the T1 and T2 relaxation times of the substance, resulting in a change in signal intensity. This study aimed to measure the relaxation rate of MR contrast medium with or without diluting CT contrast medium and analyzed the effect of CT contrast medium. Undiluted Gadoteridol solution was diluted with saline to prepare MR contrast medium phantoms with various levels of Gadoteridol concentrations. Moreover, undiluted Iomeprol was mixed with the prepared MR contrast medium phantoms at 1:1 ratio to make MR contrast medium phantoms with containing CT contrast medium for the experiment. T1 and T2 mappings were conducted to quantitatively evaluate the relaxation time and relaxation rate of these phantoms. The results showed that the T1 and T2 relaxation time and relaxation rate of MR contrast medium diluted with CT contrast medium were significantly (p<0.05) shorter than those of MR contrast medium not diluted with CT contrast medium. The results of this study imply that, when MR contrast medium shall be used after injecting CT contrast medium, CT contrast medium should be discharged enough. Moreover, it would be desirable to conduct CT test after taking MRI test in order to reduce the effects of CT contrast medium on MR contrast medium.

Comparison of Contrast-Enhanced T2 FLAIR and 3D T1 Black-Blood Fast Spin-Echo for Detection of Leptomeningeal Metastases

  • Park, Yae Won;Ahn, Sung Jun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.86-93
    • /
    • 2018
  • Purpose: Imaging plays a significant role in diagnosing leptomeningeal metastases. However, the most appropriate sequence for the detection of leptomeningeal metastases has yet to be determined. This study compares the efficacies of contrast-enhanced T2 fluid attenuated inversion recovery (FLAIR) and contrast-enhanced 3D T1 black-blood fast spin echo (FSE) imaging for the detection of leptomeningeal metastases. Materials and Methods: Tube phantoms containing varying concentrations of gadobutrol solution were scanned using T2 FLAIR and 3D T1 black-blood FSE. Additionally, 30 patients with leptomeningeal metastases were retrospectively evaluated to compare conspicuous lesions and the extent of leptomeningeal metastases detected by T2 FLAIR and 3D T1 black-blood FSE. Results: The signal intensities of low-concentration gadobutrol solutions (< 0.5 mmol/L) on T2 FLAIR images were higher than in 3D T1 black-blood FSE. The T2 FLAIR sequences exhibited significantly greater visual conspicuity scores than the 3D T1 black-blood sequence in leptomeningeal metastases of the pial membrane of cistern (P = 0.014). T2 FLAIR images exhibited a greater or equal extent (96.7%) of leptomeningeal metastases than 3D T1 black-blood FSE images. Conclusion: Because of its high sensitivity even at low gadolinium concentrations, contrast-enhanced T2 FLAIR images delineated leptomeningeal metastases in a wider territory than 3D T1 black-blood FSE.

Spreading Pattern of Epidurally-Administered Contrast Media in Rabbits (토끼에서 경막외강으로 투여한 조영제의 분포양상)

  • Lee, Sang-Chul
    • The Korean Journal of Pain
    • /
    • v.10 no.2
    • /
    • pp.231-234
    • /
    • 1997
  • Background: The aim of this study was to examine the precise spreading pattern of contrast media in small increments in rabbits. Following pentobarbital anesthesia, the epidural puncture was done surgically with a blunt hook. Methods: The tip of epidural catheter was located at the mid-portion of T7 and T12, in the T7 group (n=7) and T12 group (n=8), respectively. Injection of the contrast media was started at 0.1 mL/kg and increased by 0.1 mL/kg up to a maximum of 0.6, mL/kg, under fluoroscopy. Results: In both groups, the extent of spread increased continuously as a Starling resistor with increasing injected volume(T7 group: $y=4.0+41.8x-28.1x^2$, T12 group: $y=0.2+57.7x-43.5x^2$) the total spread of contrast media was similar. The contrast media spread equally, both rostral and caudal, from catheter tip in T7 group; media spread approximately twice as far rostral as compared to caudal in T12 group (P<0.05). Conclusions: In rabbits, the position of epidural catheter tip should be positioned 2~3 segments below the aimed segment in lower thoracic or lumbar region, whereas in mid-thoracic region it should be positioned close to the level of aimed segment. Rabbits have relatively small epidural space therefore, the volume of injectant should be carefully determined with the suggested equations of this study.

  • PDF

Quantitative T1 Mapping for Detecting Microvascular Obstruction in Reperfused Acute Myocardial Infarction: Comparison with Late Gadolinium Enhancement Imaging

  • Jae Min Shin;Eui-Young Choi;Chul Hwan Park;Kyunghwa Han;Tae Hoon Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.8
    • /
    • pp.978-986
    • /
    • 2020
  • Objective: To compare native and post-contrast T1 mapping with late gadolinium enhancement (LGE) imaging for detecting and measuring the microvascular obstruction (MVO) area in reperfused acute myocardial infarction (MI). Materials and Methods: This study included 20 patients with acute MI who had undergone 1.5T cardiovascular magnetic resonance imaging (CMR) after reperfusion therapy. CMR included cine imaging, LGE, and T1 mapping (modified look-locker inversion recovery). MI size was calculated from LGE by full-width at half-maximum technique. MVO was defined as an area with low signal intensity (LGE) or as a region of visually distinguishable T1 values (T1 maps) within infarcted myocardium. Regional T1 values were measured in MVO, infarcted, and remote myocardium on T1 maps. MVO area was measured on and compared among LGE, native, and post-contrast T1 maps. Results: The mean MI size was 27.1 ± 9.7% of the left ventricular mass. Of the 20 identified MVOs, 18 (90%) were detected on native T1 maps, while 10 (50%) were recognized on post-contrast T1 maps. The mean native T1 values of MVO, infarcted, and remote myocardium were 1013.5 ± 58.5, 1240.9 ± 55.8 (p < 0.001), and 1062.2 ± 55.8 ms (p = 0.169), respectively, while the mean post-contrast T1 values were 466.7 ± 26.8, 399.1 ± 21.3, and 585.2 ± 21.3 ms, respectively (p < 0.001). The mean MVO areas on LGE, native, and post-contrast T1 maps were 134.1 ± 81.2, 133.7 ± 80.4, and 117.1 ± 53.3 mm2, respectively. The median (interquartile range) MVO areas on LGE, native, and post-contrast T1 maps were 128.0 (58.1-215.4), 110.5 (67.7-227.9), and 143.0 (76.7-155.3) mm2, respectively (p = 0.002). Concordance correlation coefficients for the MVO area between LGE and native T1 maps, LGE and post-contrast T1 maps, and native and post-contrast T1 maps were 0.770, 0.375, and 0.565, respectively. Conclusion: MVO areas were accurately delineated on native T1 maps and showed high concordance with the areas measured on LGE. However, post-contrast T1 maps had low detection rates and underestimated MVO areas. Collectively, native T1 mapping is a useful tool for detecting MVO within the infarcted myocardium.

Benefit of Using Early Contrast-Enhanced 2D T2-Weighted Fluid-Attenuated Inversion Recovery Image to Detect Leptomeningeal Metastasis in Lung-Cancer Staging

  • Kim, Han Joon;Lee, Jungbin;Lee, A Leum;Lee, Jae-Wook;Kim, Chan-Kyu;Kim, Jung Youn;Park, Sung-Tae;Chang, Kee-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.32-42
    • /
    • 2022
  • Purpose: To evaluate the clinical benefit of 2D contrast-enhanced T2 fluid-attenuated inversion recovery (CE-T2 FLAIR) image for detecting leptomeningeal metastasis (LM) in the brain metastasis work-up for lung cancer. Materials and Methods: From June 2017 to July 2019, we collected all consecutive patients with lung cancer who underwent brain magnetic resonance image (MRI), including contrast-enhanced 3D fast spin echo T1 black-blood image (CE-T1WI) and CE-T2 FLAIR; we recruited clinico-radiologically suspected LM cases. Two independent readers analyzed the images for LM in three sessions: CE-T1WI, CE-T2 FLAIR, and their combination. Results: We recruited 526 patients with suspected lung cancer who underwent brain MRI; of these, we excluded 77 (insufficient image protocol, unclear pathology, different contrast media, poor image quality). Of the 449 patients, 34 were clinico-radiologically suspected to have LM; among them, 23 were diagnosed with true LM. The calculated detection performance of CE-T1WI, CE-T2 FLAIR, and combined analysis obtained from the 34 suspected LM were highest in the combined analysis (AUC: 0.80, 0.82, and 0.89, respectively). The inter-observer agreement was also the highest in the combined analysis (0.68, 0.72, and 0.86, respectively). In quantitative analyses, CNR of CE-T2 FLAIR was significantly higher than that of CE-T1WI (Wilcoxon signed rank test, P < 0.05). Conclusion: Adding CE-T2 FLAIR might provide better detection for LM in the brain-metastasis screening for lung cancer.

Study of Contrast Sensitivities using Polarizer-Transmittance (편광 투과율을 이용한 대비 민감도(Cs) 특성 연구)

  • Park, Sang-An;Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.59-63
    • /
    • 2001
  • Using the rotation of two polarizer plate and the area of transmittance In the visual light region measured by spectrophotometer, we obtained the luminance to measure the Contrast Sensitivity, and calculated the values of $L_{min}$ and ${\theta}_{min}$ after fixed the average contrast, $L_{max}$ and ${\theta}_{max}$ values from the values of two contrasts. Then, when it was fixed by $L_{max}=4000(T%nm)$ and ${\theta}_{max}=44.1^{\circ}$, $L_{min}$ and ${\theta}_{min}$ values were respectively given by 1333, 2666, 3920(T%nm) and 56.6, 54.3, $45^{\circ}$ in Cs values of 2.5, 100.

  • PDF

Projection-type Fast Spin Echo Imaging (프로젝션 타입 고속 스핀 에코 영상)

  • 김휴정;김치영;김상묵;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.42-51
    • /
    • 2000
  • Purpose: Projection-type Fast Spin Echo (PFSE) imaging is robust to patient motion or flow related artifact compared to conventional Fast Spin Echo (FSE) imaging, however, it has difficulty in controlling $T_2$ contrast. In this paper, Tz contrast in the PFSE method is analyzed and compared with those of the FSE method with various effective echo times by computer simulation. The contrasts in the FSE and PFSE methods are also compared by experiments with volunteers. From the analysis and simulation, it is shown that ${T_2}-weighted$ images can well be obtained by the PFSE method proposed. Materials and methods: Pulse sequence for the PFSE method is implemented at a 1.0 Tesla whole body MRI system and $T_2$ contrasts in the PFSE and FSE methods are analyzed by computer simulation and experiment with volunteers. For the simulation, a mathematical phantom composed of various $T_2$ values is devised and $T_2$ contrast in the reconstructed image by the PFSE is compared to those by the FSE method with various effective echo times. Multi-slice ${T_2}-weighted$ head images of the volunteers obtained by the PFSE method are also shown in comparison with those by the FSE method at a 1.0 Tesla whole body MRI system. Results: From the analysis, $T_2$ contrast by the PFSE method appears similar to those by the FSE method with the effective echo time in a range of SO-lOOms. Using a mathematical phantom, contrast in the PFSE image appears close to that by the FSE method with the effective echo time of 96ms. From experiment with volunteers, multi-slice $T_2-weighted$ images are obtained by the PFSE method having contrast similar to that of the FSE method with the effective echo time of 96ms. Reconstructed images by the PFSE method show less motion related artifact compared to those by the FSE method. Conclusion: The projection-type FSE imaging acquires multiple radial lines with different angles in polar coordinate in k space using multiple spin echoes. The PFSE method is robust to patient motion or flow, however, it has difficulty in controlling $T_2$ contrast compared to the FSE method. In this paper, it is shown that the PFSE method provides good $T_2$ contrast (${T_2}-weighted$ images) similar to the FSE method by both computer simulation and experiments with volunteers.

  • PDF

Maximum TE Setting Range for Quantitatively Evaluating T2 Relaxation Time : Phantom Study (T2 이완시간의 정량적 평가에 있어서 Maximum TE의 설정 범위에 대한 연구 : 팬텀연구)

  • Park, Jin Seo;Kim, Seong-Ho
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • This study aimed to evaluate the range of maximum TE that could measure T2 relaxation time accurately by setting diverse maximum TE with using contrast medium phantoms. Contrast medium phantoms ranging from low to high concentrations were made by using Gadoteridol. The relaxation time and relaxation rate were compared and evaluated by conducting T2 mapping by using reference data based on various TEs and data obtained from different maximum TEs. It was found that accurate T2 relaxation time could be expressed only when the maximum TE over a certain range was used in the section with long T2 relaxation time, such as the low concentration section of saline or gadolinium contrast medium. Therefore, the maximum TE shall be longer than the T2 relation time for accurately maturing the T2 relaxation of a certain tissue or a substance.

Magnetic Resonance Imaging Evaluation of the Prostate in Normal Dogs

  • Cho, Yu-Gyeong;Choi, Ho-jung;Lee, Ki-ja;Lee, Youngwon
    • Journal of Veterinary Clinics
    • /
    • v.37 no.6
    • /
    • pp.317-323
    • /
    • 2020
  • The aims of this study were to describe the appearance and size of the normal canine prostate using magnetic resonance (MR) imaging and to calculate the apparent diffusion coefficient (ADC) values. MR images were obtained from seven intact male beagle dogs using a 1.5 T MR unit. The sequences included pre- and post-contrast T1- and T2-weighted imaging with and without fat saturation. The signal intensity of the prostate was compared with the adjacent musculature, fat, and urine in the urinary bladder. We recorded the mean prostatic length, width, and height and the length of the sixth lumbar vertebral body (L6). In addition, the prostatic length (rL), width (rW), and height (rH) ratios to L6 were calculated. Diffusion-weighted images of the prostate were obtained and ADC values were calculated. The prostate was bilobed and oval-shaped, homogenous on T1-weighted images, and heterogeneous with radiating lines on T2-weighted images. Post-contrast T1-weighted sequences showed contrast enhancement of the central and radiating striations. The prostatic capsule was clearly identified on post-contrast T1-weighted images with fat saturation. The ADC values were 1.72-2.04 × 10-3mm2/sec (mean, 1.88 × 10-3mm2/sec). Knowledge of the normal appearance of the prostate on MR images is essential to assess prostatic diseases in dogs.

A Comparison Study of Signal Intensity of Gadolinium Contrast Media on Fast Spin echo and Ultra Short Time Echo Pulse Sequence at 3T MRI-Phantom Study (3T 자기공명영상 Fast Spin Echo (FSE)와 Ultra Short Time Echo (UTE) 펄스 시퀀스에서 가돌리늄 조영제 희석농도와 신호강도 비교 -팬텀 연구)

  • Lee, Suk-Jun;Yu, Seung-Man
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.253-259
    • /
    • 2015
  • The information of contrast media concentration on target organ is very important to get reduce the side effect and high contrast imaging. We investigated alternation of signal intensity as a function of the modality of Gd-based contrast media on spin echo and ultra short time echo (UTE) of T1 effective pulse sequence at 3T MRI unit. Gadoxetic acid, which is a MRI T1 contrast medium, was used to manufacture an agarose phantom diluted in various molarities, and sterile water and agarose 2% were used as the buffer solution for the dilution. The gold standard T1 calculation was based on coronal single section imaging of the phantom mid-point with 2D Inversion recovery spine-echo pulse sequence MR imaging for testing of phantom accuracy. The 1-2mmol/L and 7mmol/L was shown the maximum signal intensity on spin echo and UTE respectively. We confirm the difference of contrast media concentration which was shown the maximum signal intensity depending on the T1 effective pulse sequence.