• Title/Summary/Keyword: $T_{max}$

Search Result 1,111, Processing Time 0.033 seconds

Bioequivalence Test of Rifampicin Preparations(II) (리팜피신 제제의 생물학적 동등성시험(제2보))

  • Chang, Il-Hyo;Burm, Jin-Pil;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.2
    • /
    • pp.49-55
    • /
    • 1994
  • Bioequivalence test of commercially available rifampicin capsules was performed. Sixteen volunteers were divided into 2 groups and the reference and test drug were given orally (450 mg) by cross-over design. Statistical evaluation of AUC, $C_{max}\;and\;T_{max}$ involved an analysis of variance (ANOVA). The differences of mean value in AUC, $C_{max}\;and\;T_{max}$ between the reference and test drug were within 20% with reference drug. ANOVA showed no significant differences for ‘between group’, ‘drug’ and ‘period’, but not for ‘between subjects’. The power of test $(1-{\beta})\;of\;AUC\;and\;$C_{max}$ was larger than 0.8 and the confidence of bioavailability was $within\;{\pm}20%$. From these results, it was concluded that the two preparations were bioequivalent for AUC and $C_{max}$, but was not for $T_{max}$.

  • PDF

Quantitative Analysis of GBCA Reaction by Mol Concentration Change on MRI Sequence (MRI sequence에 따른 GBCA 몰농도별 반응에 대한 정량적 분석)

  • Jeong, Hyun Keun;Jeong, Hyun Do;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.182-192
    • /
    • 2015
  • In this paper, we introduce how to change the reaction rate as mol concentration when we scan enhanced MRI with GBCA(Gadolinium Based Contrast Agent), Also show the changing patterns depending on diverse MRI sequences which are made by different physical principle. For this study, we made MRI phantom ourselves. We mixed 500 mmol Gadoteridol with Saline in each 28 different containers from 500 to 0 mmol. After that, MR phantom was scanned by physically different MRI sequences which are T1 SE, T2 FLAIR, T1 FLAIR, 3D FLASH, T1 3D SPACE and 3D SPCIR in 1.5T bore. The results were as follows : *T1 Spin echo's Total SI(Signal Intensity) was 15608.7, Max peak was 1352.6 in 1 mmol. *T2 FLAIR's Total SI was 9106.4, Max peak was 0.4 1721.6 in 1 mmol. *T1 FLAIR's Total SI was 20972.5, Max peak was 1604.9 in 1 mmol. *3D FLASH's Total SI was 20924.0, Max peak was 1425.7 in 40 mmol. *3D SPACE 1mm's Total SI was 6399.0, Max peak was 528.3 in 3 mmol. *3D SPACE 5mm's Total SI was 6276.5, Max peak was 514.6 in 2 mmol. *3D SPCIR's Total SI was 1778.8, Max peak was 383.8 in 0.4 mmol. In most sequences, High signal intensity was shown in diluted lower concentration rather than high concentration, And also graph's max peak and pattern had difference value according to the each different sequence. Through this paper which have quantitative result of GBCA's reaction rate depending on sequence, We expect that practical enhanced MR protocol can be performed in clinical field.

ALGORITHMIC PROOF OF MaxMult(T) = p(T)

  • Kim, In-Jae
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.665-668
    • /
    • 2012
  • For a given graph G we consider a set S(G) of all symmetric matrices A = [$a_{ij}$] whose nonzero entries are placed according to the location of the edges of the graph, i.e., for $i{\neq}j$, $a_{ij}{\neq}0$ if and only if vertex $i$ is adjacent to vertex $j$. The minimum rank mr(G) of the graph G is defined to be the smallest rank of a matrix in S(G). In general the computation of mr(G) is complicated, and so is that of the maximum multiplicity MaxMult(G) of an eigenvalue of a matrix in S(G) which is equal to $n$ - mr(G) where n is the number of vertices in G. However, for trees T, there is a recursive formula to compute MaxMult(T). In this note we show that this recursive formula for MaxMult(T) also computes the path cover number $p$(T) of the tree T. This gives an alternative proof of the interesting result, MaxMult(T) = $p$(T).

Bioequivalence Study of Acetyl-L-Carnitine Tablets (아세틸-엘-카르니틴 정제의 생물학적 동등성 평가)

  • 박경미;이미경;신지영;임수정;임윤영;김종국;우종수
    • Biomolecules & Therapeutics
    • /
    • v.9 no.4
    • /
    • pp.285-290
    • /
    • 2001
  • Bioequivalence of two acetyl-1-carnitine tablets, test product (Carnitile tablet: Hanmi Pharm. Co., Ltd.) and reference product (Nicetil $e^{R}$ tablet: Dong-A Pharm. Co., Ltd.), was evaluated according to the guide- lines of Korea Food and Drug Administration (KFDA). Twenty-six healthy volunteers were divided randomly into two groups and administered the drug orally at the dose of 500 mg as acetyl-1-carnitine in a 2$\times$2 crossover study. Blood samples were taken at predetermined time intervals for 12 hours and the plasma concentration of acetyl-1-carnitine was determined using HPLC by derivatization with p-bromophenacyl bromide. The pearmacokinetic parameters (AU $C_{0-}$12h/ $C_{max}$ and $T_{max}$) were calculated and ANOVA was utilized for the statistical analysis of parameters. The apparent differences of these parameters between two drugs were less than 20% (i.e., 1.26,-5.08 and 8.59% for AU $C_{0-}$12h/ $C_{max}$ and $T_{max}$, respectively). The powers (1-$\beta$) for AU $C_{0-}$12h/ $C_{max}$ and $T_{max}$, and Tmax were over 0.9. Minimal detectable difference ($\Delta$) at $\alpha$=0.05, 1-$\beta$=0.8 were less than 20% (i.e.,7.31, 14.88 and 11.77% for AU $C_{0-}$12h/ $C_{max}$ and $T_{max}$, respectively). The confidence intervals ($\delta$) for these parameters were also within $\pm$ 20% (i.e.,-3.03$\leq$$\delta$$\leq$5.54, -13.80$\leq$$\delta$$\leq$3.64 and 1.69$\leq$$\delta$$\leq$15.48 for AU $C_{0-}$12h/ $C_{max}$ and $T_{max}$, respectively). These results satisfied the criteria of KFDA guideline for bioequivalence, indicating Carnitile bioequivalent to Nicetil $e^{R}$ .TEX>$^{R}$ .> R/ . R/ .

  • PDF

Bioequivalence of Cardil Tablet to Cardura Tablet (Doxazosin 2 mg) (카두라 정(독사조신 2 mg)에 대한 카르딜 정의 생물학적 동등성)

  • Cho, Hea-Young;Kim, Soo-Jin;Shim, Young-Sun;Lim, Dong-Koo;Oh, In-Joon;Moon, Jai-Dong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.1
    • /
    • pp.61-65
    • /
    • 2000
  • Doxazosin, a postsynaptic selective ${\alpha}1-adrenoceptor$ antagonist, is a potent antihypertensive agent which reduces peripheral resistance and blood pressure by vasodilatation of peripheral vessels. It is also used in the treatment of urinary obstruction by benign prostatic hypertrophy. The purpose of the present study was to evaluate the bioequivalence of two doxazosin tablets, $Cardura^{TM}$ (Pfizer Korea Ltd.) and $Cardil^{TM};$ (Kyungdong Pharmaceutical Co., Ltd.), according to the guidelines of Korea Food and Drug Administration (KFDA). Sixteen normal male volunteers, $24.19{\pm}2.48$ years in age and $62.41{\pm}6.66$ kg in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After one tablet containing 2 mg of doxazosin was orally administered, blood was taken at predetermined time intervals and the concentrations of doxazosin in serum were determined with an HPLC method using spectrofluorometric detector. Pharmacokinetic parameters such as $AUC_t,\;C_{max}\;and\;T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters. The results showed that the differences in $AUC_t,\;C_{max}\;and\;T_{max}$ between two tablets were -1.54%, -1.51 % and 3.42%, respectively, when calculated against the $Cardura^{TM}$ tablet. The powers $(1-{\beta})$ for $AUC_t,\;C_{max}\;and\;T_{max}$ were all more than 99.00%. Minimum detectable differences $(\Delta)$ at ${\alpha}=0.05\;and\;1-{\beta}=0.8$ were all less than 20% (e.g., 12.73%, 12.84% and 13.01% for $AUC_t,\;C_{max}\;and\;T_{max}$, respectively). The 90% confidence intervals were all within :${\pm}20%$ (e.g., $-8.97{\sim}5.90,\;-9.01{\sim}6.00\;and\;-4.16{\sim}11.05\;for\;AUC_t,\;C_{max}\;and\;T_{max},\;respectively)$. All of the above para- meters met the criteria of KFDA for bioequivalence, indicating that $Cardil^{TM}$ tablet is bioequivalent to $Cardura^{TM}$ tablet.

  • PDF

Bioequivalence of Tigrin Capsule to Disgren Capsule (Triflusal 300 mg) (디스그렌 캅셀(트리플루살 300 mg)에 대한 티그린 캅셀의 생물학적 동등성)

  • Kim, Soo-Jin;Shim, Young-Sun;Son, Sun-Mi;Lim, Dong-Koo;Moon, Jai-Dong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.355-360
    • /
    • 1999
  • Triflusal is a new antithrombotic agent which inhibits both platelet cyclooxygenase and c-AMP phosphodiesterase activity. The purpose of the present study was to evaluate the bioequivalence of two triflusal capsules, $Disgren^{TM}$ (Myung-In Pharmaceutical Co., Ltd.) and $Tigriri^{TM}$ (Hana Pharmaceutical Co., Ltd.) according to the guidelines of Korea Food and Drug Administration (KFDA). Eighteen normal male volunteers, $22.94{\pm}1.83$ in age and $63.7l{\pm}10.43$ kg in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After one capsule containing 300 mg of triflusal was orally administered, blood was taken at predetermined time intervals and the concentrations of triflusal in serum were determined using HPLC method with UV detector. Pharmacokinetic parameters such as $AUC_t$ $C_{max}$ and $T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters. The results showed that the differences in $AUC_t$ $C_{max}$ and $T_{max}$ between two capsules were -0.30%, 0.81 % and -3.03%, respectively when calculated against the $Disgren_{TM}$ capsule. The powers $(1-{\beta})$ for $AUC_t$ $C_{max}$ and $T_{max}$ were 98.29%,84.73% and 81.02%, respectively. Minimum detectable differences $({\Delta})$ at ${\alpha}=0.1$ and $1-{\beta}=0.8$ were all less than 20% (e.g., 12.91%, 18.46% and 19.65% for $AUC_t$ $C_{max}$ and $T_{max}$ respectively). The 90% confid,ence intervals were all within ${\pm}20%$(e.g., $-8.97{\sim}8.37$, $-11.58{\sim}13.22$ and $-16.23{\sim}10.17$ for $AUC_t$ $C_{max}$ and $T_{max}$, respectively). All of the above parameters ($1-{\beta}, {\Delta}$ and 90% confidence intervals) met the criteria of KFDA for bioequivalence, indicating that $Tigriri^{TM}$ capsule is bioequivalent to $Disgren^{TM}$ capsule.

  • PDF

Bioequivalence of Hana Ondansetron Tablet to Zofran Tablet (Ondansetron 8 mg) (조프란 정(온단세트론 8 mg)에 대한 하나 온단세트론 정의 생물학적 동등성)

  • Cho, Hea-Young;Kim, Soo-Jin;Shim, Young-Sun;Lim, Dong-Koo;Oh, In-Joon;Moon, Jai-Dong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.213-218
    • /
    • 2000
  • Ondansetron is a potent, highly selective 5-hydroxytryptamine3(5-HT3) receptor- antagonist, for the management of nausea and vomiting induced by cytotoxic chemotherapy and radiography, and the treatment of post-operative nausea and vomiting. The purpose of the present study was to evaluate the bioequivalence of two ondansetron tablets, $Zofran^{TM}$, (Glaxo Wellcome Korea Ltd.) and Hana ondansetron (Hana Pharmaceutical Co., Ltd.), according to the guidelines of Korea Food and Drug Administration (KFDA). Eighteen normal male volunteers, $23.56{\pm}1.79$ year in age and $67.35{\pm}8.35\;kg$ in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After one tablet containing 8 mg of ondansetron was orally administered, blood was taken at predetermined time intervals and the concentrations of ondansetron in serum were determined using HPLC with UV detector. Pharmacokinetic parameters such as $AUC_t,\;C_{max}\;and\;T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters. The results showed that the differences in $AUC_t,\;C_{max}\;and\;T_{max}$ between two tablets were 7.53%, -0.23% and -3.92%, respectively when calculated against the $Zofran^{TM}$, tablet. The powers $(1-{\beta})$ for $AUC_t,\;C_{max}\;and\;T_{max}$ were above 99.00%, above 99.00% and 84.99%, respectively. Minimum detectable differences $(\Delta)\;at\;{\alpha}=0.1\;and\;1-{\beta}=0.8$ were all less than 20% (e.g., 12.25%, 10.88% and 18.37% for $AUC_t,\;C_{max}\;and\;T_{max}$, respectively). The 90% confidence intervals were all within ${\pm}20%$ (e.g., $-0.70{\sim}15.76,\;-7.53{\sim}7.08\;and\;-16.27{\sim}8.42\;for\;AUC_t,\;C_{max}\;and\;T_{max}$, respectively). All of the above parameters met the criteria of KFDA for bioequivalence, indicating that Hana ondansetron tablet is bioequivalent to $Zofran^{TM}$, tablet.

  • PDF

A Comparative Analysis of GBEF According to Image Aquisition Method in Hepatobiliary Scan (간담도스캔의 영상수집방법에 따른 담즙배출율의 비교분석)

  • Kim, Yeong-Seon;Seo, Myeong-Deok;Lee, Wan-Kyu;Song, Jae-Beom
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.8-16
    • /
    • 2014
  • Purpose The quantitative analysis of gallbladder emptying is very important in diagnosis of motility disorder of gallbladder and in biliary physiology. The GBEF obtain the statics aquisition method or the dynamic acquisition method in two ways. The purpose of this study is to compare the GBEF value of statics acquisition method and the dynamic acquisition method. And we find the best way for calculate GBEF. Materials and Methods The quantitative hepatobiliary scan with $^{99m}Tc$-mebrofenin was performed of 27 patients. Initial images were acquired statically, for 60 min after injection of the radioactive tracer. And if the gallbladder is visualized to 60 min, performed stimulation of gallbladder (1egg, 200 mL milk). After that, started acquisition of dynamic image for 30 min. After that, image of after fatty meal of the statics method were acquired on equal terms with 60 min image. The statics GBEF was calculated using the images of before fatty meal and post fatty meal by the statics method. The dynamic GBEF was calculated using the images of time of maximum bile juice uptake ($T_{max}$) and time of minimum bile juice uptake ($T_{min}$) images from the gallbladder time-activity curve. A bile juice is secreted from gallbladder while eating a fatty meal. that is named early GBEF and that was calculated using before fatty meal image of the statics method and 1 min image of the dynamic method. Results The result saw very big difference between two according to $T_{max}$. The result, were as follows. 1) In case of less than 1 min, the dynamic mean GBEF was $40.1{\pm}21.7%$, the statics mean GBEF was $51.5{\pm}23.6%$ in 16 cases. The early mean GBEF was $14.0{\pm}29.1%$. The GBEF of statics method was higher because that include secreted bile juice while performed stimulation of gallbladder. A difference of GB counts according to acquisition method and the early bile juice counts was $17.6{\pm}14.8%$ and $13.5{\pm}15.3%$. 2) In case of exceed than 1 min, the dynamic mean GBEF was $31.0{\pm}19.7%$, the statics mean GBEF was $21.3{\pm}19.4%$ in 7 cases. The early GBEF was $-6.9{\pm}4.9%$. The GBEF of dynamic method was higher because that include concentrated bile juice to $T_{max}$. A difference of GB counts according to acquisition method and the early bile juice counts was $14.3{\pm}7.3%$ and $5.9{\pm}3.9%$. Conclusion The statics method is very easy and simple, but in case of $T_{max}$ delay, the GBEF can be lower. The dynamic method is able to calculate accurately in case of $T_{max}$ delay, but in case of $T_{max}$ is less than 1 min, the GBEF can be lower because dynamic GBEF exclude secreted bile juice while performed stimulation of gallbladder. The best way to calculate GBEF is to scan with dynamic method preferentially and to choose suitable method between the two way after conform $T_{max}$ on the T-A curve of the dynamic method.

  • PDF

Bioequivalence of Cepirin Capsule to Suprax Capsule (Cefixime 100 mg) (슈프락스 캅셀 (세픽심 100 mg)에 대한 세피린 캅셀의 생물학적 동등성)

  • Jeong, Eun-Ju;Kang, Won-Ku;Kwon, Kwang-Il
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.2
    • /
    • pp.145-149
    • /
    • 1999
  • Bioequivalence of two cefixime capsules, test drug ($Cepirin^R$ capsule: Cheiljedang Corp.) and reference drug ($Suprax^R$ capsule: Dong A Pharm. Com.), was evaluated according to the guidelines of Korea Food and Drug Administration (KFDA). Sixteen healthy volunteers were divided randomly into two groups and administered the drug orally at the dose of 400 mg as cefixime in a $2{\times}2$ crossover study. There was a 1-week washout period between the administrations. Blood samples were taken at predetermined time intervals for 12 hour and the plasma concentration of cefixime was determined with a HPLC method. $AUC_{0-12hr}$ (area under the plasma concentration-time curve form time zero to 12 hour), $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were estimated from the plasma drug concentrationtime data. Analysis of variance (ANOVA) revealed no difference in $AUC_{0-12hr}$, $C_{max}$ and $T_{max}$ between the formulations. The apparent differences of these parameters between the formulations were less than 20% (i.e., 8.62, 11.10 and 0.00% for $AUC_{0-12hr}$, $C_{max}$ and $T_{max}$,respectively). The powers $(1-{\beta})$ for $AUC_{0-12hr}$ $C_{max}$ and $T_{max}$ were over 0.9. Minimal detectable difference $({\Delta})$ at ${\alpha}=0.05$, $1-{\beta}=0.8$ were less than 20% (i.e., 12.84, 11.05 and 17.99% for $AUC_{0-12hr}$, $C_{max}$ and $T_{max}$, respectively). The 90% confidence intervals $({\delta})$ for these parameters were also within ${\pm}20%$ (i.e., $-0.53{\le}{\delta}{\le}17.76$, $3.23{\le}{\delta}{\le}18.97$ and $-12.81{\le}{\delta}{\le}12.81$ for $AUC_{0-12hr}$, $C_{max}$ and $T_{max}$, respectively). These results satisfied the criteria of KFDA guideline for bioequivalence, indicating the two formulations of cefixime were bioequivlent.

  • PDF

Bioequivalence of Prepulsid Tablet to Cisaple Tablet (Cisapride 5 mg) (프레팔시드 정(시사프리드 5 mg)에 대한 시사플 정의 생물학적 동등성)

  • Kwak, Son-Hyuk;Nam, Jin-Kyung;Jiang, Ge;Han, Jung-Hee;Woo, Jong-Soo;Rhee, Gye-Ju;Park, Jong-Woo;Koo, Sun-Hoe;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.1
    • /
    • pp.55-59
    • /
    • 2000
  • Bioequivalence of two cisapride tablets, test drug ($Cisple^{\circledR}$ tablet: Hanmi Pharm Co., Ltd.) and reference drug ($Prepulsid^{\circledR}$ tablet: Janssen Pharm. Co., Ltd.), was evaluated according to the guidelines of Korea Food and Drug Administration (KFDA). Twenty two healthy male volunteers were divided randomly into two groups and administered the drug orally at the dose of 10 mg as cisapride in a $2{\times}2$ crossover study. There was a week washout period between administrations. Blood samples were taken at predetermined time intervals for 36 hr and the plasma concentration of cisapride was determined by a HPLC method. $AUC_{0-36hr}$ (area under the plasma concentration-time curve from time zero to 36 hr), $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were estimated from the plasma drug concentration-time data. Analysis of variance (ANOVA) revealed no difference in $AUC_{0-36hr},\;C_{max}\;and\;T_{max}$ between two products. The apparent differences of these parameters between two products were less than 20% (i.e., 5.38, 6.17 and 0.00% for $AUC_{0-36hr},\;C_{max}\;and\;T_{max},$ respectively). The powers $(1-\beta)$ for $AUC_{0-36hr},\;C_{max}\;and\;T_{max}$ were over 0.9. Minimal detectable differences $(\Delta)$ at ${\alpha}=0.05,\;1-{\beta}=0.8$ were less than 20% (i.e. 17.67, 14.84 and 19.72% for $AUC_{0-36hr},\;C_{max}\;and\;T_{max},$ respectively). The 90% confidence intervals $(\delta)$ for these parameters were also within ${\pm}20%$ $(i.e.\;-4.97\;{\le}{\delta}{\le}\;15.73,\;-2.53{\le}{\delta}{\le}\;14.86\;and\;-11.55{\le}{\delta}{\le}\;11.55$ for $AUC_{0-36hr},\;C_{max}\;and\;T_{max},$ respectively). These results satisfied the criteria of KFDA guidelines for bioequivalence, indicating the two tablets of cisapride were bioequivalent.

  • PDF