International Journal of Air-Conditioning and Refrigeration
/
v.13
no.2
/
pp.107-118
/
2005
An experimental investigation was made to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R-22. Experiments were carried out under the conditions of saturation temperature of $5^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of $27^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71m/s. A comparison was made between the predictions from the previously proposed tube-by-tube method and the present experimental data for the heat transfer rate of evaporator. Results show that $82.5\%$ increase of air velocity is needed for T-type distributor with four outlet branches than that of two outlet branches under the superheat of $5^{\circ}C$, which resulted in increasing of air-side pressure drop of $130\%$ for the former as compared to the latter.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2004.03a
/
pp.216-227
/
2004
A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.
Kweon, Hyeong Do;Lee, Yun Joo;Kim, Dong Hak;Lee, Do Hwan
Transactions of the Korean Society of Pressure Vessels and Piping
/
v.15
no.1
/
pp.71-76
/
2019
Actual stress distributions in the nozzle of a pressure vessel may not be in plane strain condition, implying that the crack-tip constraint condition may be relaxed in the nozzle. In this paper, a methodology for evaluating the fracture toughness of the ASME Code is presented considering the relaxation of the constraint effect in the nozzle of the reactor pressure vessel. The crack-tip constraint effect is quantified by the T-stress. The equation, which represent the relation between the fracture toughness in the lower constraint condition and the plane strain fracture toughness, is derived using the T-stress. This equation is similar to the method for evaluating the fracture toughness of the Master Curve for low constraint conditions. As a result of evaluating the fracture toughness considering the constraint effect in the reactor inlet, outlet and direct injection nozzles using the proposed equation, it was confirmed that the fracture toughness in the nozzles is higher than the plane strain fracture toughness. Applying the proposed evaluation methodology, it is possible to reflect the relaxation of the constraint effect in the nozzles of the reactor pressure vessel, therefore, the safe operation area on the pressure-temperature limit curve can be prevented from being excessively limited.
Korean Journal of Agricultural and Forest Meteorology
/
v.21
no.4
/
pp.250-260
/
2019
This study assessed clove germination, shoot growth, photosynthesis and bulb development of southern-type garlic (Allium sativum L.) in a temperature gradient tunnel (TGT), to examine the impacts of increases in temperature on the growth of garlic and find a way to minimize them. The temperatures in the middle and outlet of the TGT were 3.2℃ and 5.8℃ higher, respectively, than the ambient temperature at the tunnel inlet. The germination of garlic cloves was late at temperatures of ambient+3℃ (in the middle of the TGT) and ambient+6℃ (at the outlet) than at ambient temperature (at the inlet). However, bolting and the timing of maximum leaf number per plant were faster at ambient+3℃ or +6℃ than at ambient temperature. Shoot growth was generally greater at ambient temperature. Bulb growth did not significantly differ according to cultivation temperatures, but fresh and dry weights were slightly higher at ambient temperature and ambient+3℃ in the late growth stage. The photosynthesis rate (A), stomatal conductance (gs), and transpiration rate (E) were higher at ambient+3℃ than at ambient temperature. Furthermore, at ambient+3℃, the net photosynthetic rate (Amax) was high, while the dark respiration rate (Rd) was low. At ambient temperature and ambient+3℃, bulb development was healthier, resulting in better productivity and more commercial bulbs, while at ambient+6℃, the bulbs were small and secondary cloves developed, resulting in low commercial value. Therefore, at elevated temperatures caused by global warming, it is necessary to meet the low-temperature requirements before clove sowing, or to delay the sowing time, to improve germination rate and increase yield. The harvest should also be advanced to escape high-temperature stress in the bulb development stage.
Song, T.W.;Sohn, J.L.;Kim, J.H.;Kim, T.S.;Ro, S.T.;Suzuki, K.
Proceedings of the KSME Conference
/
2004.04a
/
pp.2070-2075
/
2004
Performance of a solid oxide fuel cell (SOFC) can be enhanced by converting thermal energy of its high temperature exhaust gas to mechanical power using a micro gas turbine (MGT). A MGT plays also an important role to pressurize and warm up inlet gas streams of the SOFC. In this study, the influence of performance characteristics of the tubular SOFC on the hybrid power system is discussed. For this purpose, detailed heat and mass transfer with reforming and electrochemical reactions in the SOFC are mathematically modeled, and their results are reflected to the performance analysis. The analysis target is 220kWe SOFC/MGT hybrid system based on the tubular SOFC developed by Siemens-Westinghouse. Special attention is paid to the ohmic losses in the tubular SOFC counting not only current flow in radial direction, but also current flow in circumferential direction through the anode and cathode.
Hybrid PV/Thermal systems consisting of photovoltaic module and thermal collector can produce the electricity and thermal energy. The solar radiation increases the temperature of PV modules, resulting in the decrease of their electrical efficiency. Accordingly hot air can be extracted from the space between the PV panel and roof, so the efficiency of the PV module increases. The extracted thermal energy can be used in several ways, increasing the total energy output of the system. This study describes a basic type of PV/T collector using water. In order to analyze the performance of the collector, the experiment was conducted. The result showed that the thermal efficiency was 17% average and the electrical efficiency of the PV module was about $10.2%{\sim}11.5%$, both depending on solar radiation, inlet water temperature and ambient temperature.
We develop a heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a heat recovery steam generator (HRSG). This heat recovery system has 4 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 1 MPa and tested steam pressure is 0.7 MPa. In order to test these heat exchanger modules, we make a 0.5t/h flue tube boiler (LNG, $40\;Nm^3/h$). We tested the heat exchanger module with changing the position of each heat exchanger module. We measured the inlet and outlet temperature of each heat exchanger module and calculated the heat exchange rate. The results show that if module C is placed at second stage (the 1st stage is always module O, bare tube module), there is no need to attach an additional heat exchanger module. In this case the exit temperature of module C is low enough to enter an economizer which is more effective in heat recovery than a heat exchanger module.
A multiphase CFD analysis is performed to investigate the effect of near-wall grid for simulating a subcooled boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and vapor(steam) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit ($y_{w}^{+}$) was examined from 64 to 172 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y_{w}^{+}$ > 100.
boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and gas(vapour) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit for lqiuid phase ($y^+_{w,l}$) was examined from 101 to 313 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y^+_{w,l}$ > 300 at the tube exit.
In this study, the cooling characteristics of a liquid cooler using thermoelectric module was experimentally investigated. The experiment was conducted for various inner structures of liquid cooler (4 cases), hot fluid flow rates (0.15-0.25 L/min), number of T.E module (2, 4, 6 set), and the cooling water flow rates (200-600 cc/min) for both parallel and counter flow types. Among the results, better cooling performance geometry was selected. And experiment was also carried out to examine further enhancement of cooling performance by inserting coils (pitches: 0.2, 3, 6 mm) into the hot-fluid channel. Present results showed that the short serpentine type(case2) indicated the best cooling performance. In the case of coil pitch of 3 mm, the best cooling performance was shown, more than 10% increase of the inlet and outlet temperature difference, compared with the case of the cooler without coil. Consequently, the inserted coil pitch should be properly selected to improve cooling performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.