• 제목/요약/키워드: $Sr_2SiO_4$

검색결과 249건 처리시간 0.026초

자외선 여기용 청색 및 황색 형광체의 발광특성 (Luminescence Characteristics of Blue and Yellow Phosphor for Near-Ultraviolet)

  • 최경재;박정규;김경남;김창해;김호건
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.304-308
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;Sr_3MgSi_2O_8$ blue phosphor and $(Sr,Ba)_2SiO_4$ yellow phosphor and prepared white LEDs by combining these phosphors with a InGaN UV LED chip. Three distinct emission bands from the InGaN-based LED and the two phosphors are clearly observed at 405 nm, 460 nm and at around 560 nm, respectively. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This blue emission was used as an optical transition of the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor. The 460 nm and 560 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the $Sr_3MgSi_2O_8:Eu$ and $(Sr,Ba)_2SiO_4$ host matrix. As a consequence of a preparation of UV White LED lamp using the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the ration of epoxy/two phosphor (1/0.2361). At this time, the CIE chromaticity was CIE x = 0.3140, CIE y = 0.3201 and CCT (6500 K).

Eu2+/Dy3+ 이온이 도핑된 Sr2MgSi2O7 분말 합성 및 발광 특성 (Synthesis and Luminescent Characterization of Eu2+/Dy3+-Doped Sr2MgSi2O7 Powders)

  • 박재한;김영진
    • 한국재료학회지
    • /
    • 제24권12호
    • /
    • pp.658-662
    • /
    • 2014
  • $Eu^{2+}/Dy^{3+}$-doped $Sr_2MgSi_2O_7$ powders were synthesized using a solid-state reaction method with flux ($NH_4Cl$). The broad photoluminescence (PL) excitation spectra of $Sr_2MgSi_2O_7:Eu^{2+}$ were assigned to the $4f^7-4f^65d$ transition of the $Eu^{2+}$ ions, showing strong intensities in the range of 375 to 425 nm. A single emission band was observed at 470 nm, which was the result of two overlapping subbands at 468 and 507 nm owing to Eu(I) and Eu(II) sites. The strongest emission intensity of $Sr_2MgSi_2O_7:Eu^{2+}$ was obtained at the Eu concentration of 3 mol%. This concentration quenching mechanism was attributable to dipole-dipole interaction. The $Ba^{2+}$ substitution for $Sr^{2+}$ caused a blue-shift of the emission band; this behavior was discussed by considering the differences in ionic size and covalence between $Ba^{2+}$ and $Sr^{2+}$. The effects of the Eu/Dy ratios on the phosphorescence of $Sr_2MgSi_2O_7:Eu^{2+}/Dy^{3+}$ were investigated by measuring the decay time; the longest afterglow was obtained for $0.01Eu^{2+}/0.03Dy^{3+}$.

UV pumped two color phosphor blend White emitting LEDs

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.636-639
    • /
    • 2004
  • We have synthesized a $Eu^{2{\cdot}}$ -activated $Sr_3MgSi_2O_8$ blue phosphor and $Ba^{2{\cdot}}$ co-doped $Sr_2SiO_4$ yellow phosphor investigated an attempt to develop white LEDs by combining it with a GaN blue LED chip. Three distinct emission bands from the GaN-based LED and the ($Sr_3MgSi_2O_8$:Eu + $Ba^{2{\cdot}}$ co-doped $Sr_2SiO_4$:Eu) phosphor are clearly observed at 405nm, 455 nm and at around 540 nm, respectively. These three emission bands combine to give a spectrum that appears white to the naked eye. Our results show that GaN (405 nm chip)-based ($Sr_3MgSi_2O_8$:Eu + $Ba^{2{\cdot}}$ co-doped $Sr_2SiO_4$:Eu) exhibits a better luminous efficiency than that of the industrially available product InGaN (460 nm chip)-based YAG:Ce.

  • PDF

자화된 SrO${\cdot}6Fe_{2}O_{3}$ Ceramics 계면에서 대전된 colloid 반도체의 전위장벽 청소효과 (The Potential Barrier Scavenging Effects of the Charged Colloidal Semiconductors at the Magnetized SrO${\cdot}6Fe_{2}O_{3}$ Ceramics Interfaces)

  • Jang Ho Chun
    • 전자공학회논문지A
    • /
    • 제29A권4호
    • /
    • pp.22-27
    • /
    • 1992
  • The cyclic voltammogram characteristics at the magnetized SrO${\cdot}6Fe_{2}O_{3}$ ceramics/(($10^{-3}$M KCI + p-Si powders) and /(($10^{-4}$M CsNO$_3$ + n-GaAs powders) suspension interfaces have been studied using the microelectrophoresis and the cyclic voltammetric method. The negatively charged ions are specifically absorbed on the virgin and the magnetized SrO${\cdot}6Fe_{2}O_{3}$ ceramics surfaces. The zeta potentials of the p-Si and n-GaAs colloidal semiconductors are + 41mV and -44.8mV, respectively. The magnetization effects act as potential barriers at the magnetized SrO${\cdot}6Fe_{2}O_{3}$ interfaces. The positivelely charged p-Si and the negatively charged n-GaAs colloidal semiconductors act as potential barriers at the virgin SrO${\cdot}6Fe_{2}O_{3}$ interfaces. On the other hand, the charged p-Si and n-GaAs colloidal semiconductors act as potential barrier scavengers at the magnetized SrO${\cdot}6Fe_{2}O_{3}$ interfaces. The magnetization effects and the charged colloidal semiconductor effects are irreversible and interdependent.

  • PDF

LED용 Ba2+ Co-Doped Sr2SiO4:Eu 황색 형광체의 발광특성 (Luminescence Characteristics of Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes)

  • 최경재;박정규;김경남;김창해;김호건
    • 한국세라믹학회지
    • /
    • 제43권3호
    • /
    • pp.169-172
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;{(Sr,Ba)}_2SiO_4$ yellow phosphor and investigated the development of blue LEDs by combining the phosphor with a InGaN blue LED chip (${\lambda}_{em}$=405 nm). The InGaN-based ${(Sr,Ba)}_2SiO_{4}:Eu$ LED lamp shows two bands at 405 nm and 550 nm. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This 405 nm emission was used as an optical transition of the ${(Sr,Ba)}_2SiO_{4}:Eu$ phosphor. The 550 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the ${(Sr,Ba)}_2SiO_4$ host matrix. In the preparation of UV Yellow LED Lamp with ${(Sr,Ba)}_2SiO_{4}:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the epoxy-to-yellow phosphor ratio of 1:0.45. At this ratio, the CIE chromaticity was x=0.4097 and y=0.5488.

다결정 및 박막형 $Sr_2Nb_2O_7$의 입자배향과 전기적특성 (Grain Orientation and Electrical Properties of $Sr_2Nb_2O_7$ Ceramics and Thin Films)

  • 손창헌;전상재;남효덕;이희영
    • 한국전기전자재료학회논문지
    • /
    • 제11권4호
    • /
    • pp.274-280
    • /
    • 1998
  • Polycrystalline $Sr_2Nb_2O_7$ ceramics with very high Curie temperature were sintered using the powder derived by the chemical coprecipitation method (CCP). The phase evolution and grain-orientation of sintered samples were examined by XRD, while sintering behavior, dielectric properties and polarization were studied by SEM and ferroelectric tester. Extremely high degree of grain-orientation was observed along the (0k0) direction, which resulted in anisotropic dielectric properties of the sintered samples, with the dielectric constant values approaching those for single crystal. Thin film fabrication of $Sr_2Nb_2O_7$ in the pyroniobate family was also attempted on $SiO_2$/Si(100), Pt/$SiO_2$/Si(100), Pt/Ti/$SiO_2$/Si(100) and Pt/$ZrO_2/SiO_2/Si_2(100)$ substrates, using metalorganic decomposition (MOD) process. Neodecanoate precursor solution was prepared by mixing strontium neodecanoate with niobium neodecanoate synthesized from niobium ethoxide. It was found that $Sr_2Nb_2O_7$ single phase appeared in XRD patterns the samples annealed above $950^{\circ}C$. The effect of substrate type on film microstructure and dielectric properties was observed.

  • PDF

Combinatorial Synthesis and Screening of the Eu-activated Phosphors in the System MO-$Al_2O_3-SiO_2$(M=Sr, Ba)

  • Yoon, Ho-Shin;Park, Jung-Kyu;Kim, Chang-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.650-653
    • /
    • 2004
  • We have synthesized some phosphors in the system MO-$Al_2O_3-SiO_2$(M=Sr, Ba) by combinatorial polymerized-complex method. Composition and synthetic temperature of phosphors in the liblary was screened from the emission intensities of individual samples under 365nm excitation. As we were screened the higher luminescent candidate composition (or candidate host lattice) at 365nm excitation, investigated whether good radiation was possible at the 405 or 465nm excitation by give the host lattice to be discovered more various change. From libraries about 2 systems, the compound to be expected in long wavelength among the compound to be screened are $Sr_4Al_{14}O_{25}$, $Sr_3Al_2O_6$, $SrAl_2Si_2O_8$, and $BaAl_2Si_2O_8$.

  • PDF

IR, 경도 그리고 굴절률에 의안 SrO-B2O3-SiO2 유리들의 구조 (Structures of SrO-B2O3-SiO2 Glasses using IR, Hardness, and Refractive Index)

  • 문성준;김현태;심문식;박광호
    • 한국안광학회지
    • /
    • 제7권1호
    • /
    • pp.57-61
    • /
    • 2002
  • 3성분 $SrO-B_2O_3-SiO_2$ 유리들을 R(${\equiv}SrO\;mole%/B_2O_3\;mole%$)과 K(${\equiv}SiO_2\;mole%/B_2O_3\;mole%$)에 의하여 제작하여 유리들의 구조를 적외선 투과(Infrared transmittance), 경도(hardness) 그리고 굴절률(refractive index)을 이용하여 조사하였다. 첫째, 적외선 투과 스펙트럼에 의한 유리구조들의 변화는 R의 증가에 따라 $1200{\sim}1600cm^{-1}$ 영역에서 $BO_3$ 단위구조에 의한 B-O 결합의 신축떨기(stretching vibration)에 의한 흡수 띠의 세기가 감소되어지며, 사면체 구조인 $BO_4$ 단위구조에 의한 B-O 결합의 신축떨기에 의한 흡수 띠의 세기는 $800{\sim}1200cm^{-1}$ 영역에서 변화되어졌다. 그리고 K의 증가에 따라 $BO_3$ 단위구조에 의한 B-O 결합의 신축떨기에 의한 흡수 띠의 세기는 증가되어지며, 사면체 구조인 $BO_4$ 단위구조에 의한 B-O 결합의 신축떨기에 의한 흡수 띠의 세기가 감소하였다. 둘째, 유리들의 경도는 유리 망목구조(network) 내에 형성되어지는 $BO_4$$BO_3{^-}$ 단위구조들의 수에 의존하여 각각 증가와 감소하였으며, 굴절률은 SrO량에 크게 의존하였으며 유리 망목구조 내에 형성되어지는 $BO_4$$BO_3{^-}$ 단위구조 수에 적게 의존함을 알 수 있었다.

  • PDF

Magnetic Properties of Sr-ferrite Powder Prepared by Intensive Mechanical Milling Technique

  • Kwon, H.W.;Bae, J.W.
    • Journal of Magnetics
    • /
    • 제8권3호
    • /
    • pp.118-120
    • /
    • 2003
  • As an alternative promising way of producing high coercivity Sr-ferrite for a permanent magnet application, intensive mechanical milling process was applied to the raw materials of the Sr-ferrite with different composition. Synthesising reactivity for the Sr-ferrite of the mechanically milled raw material containing $SrCO_3$, $La_2O_3$, $Fe_2O_3$, $Co_3O_4$, and $SiO_2$ was inferior to that of the raw material containing $SrCO_3$ and $Fe_2O_3$, The Sr-ferrite prepared from mechanically milled raw materials had profoundly improved magnetic properties compared to the Sr-ferrite prepared by conventional method. Beneficial effect of the substituting ($La_2O_3$, $Co_3O_4$) and additive ($SiO_2$) oxides for improving the magnetic properties was not exploited in the Sr-ferrite prepared from the mechanically milled raw material. The Sr-ferrite powder prepared from the mechanically milled raw materials was magnetically isotropic in nature.

Si 및 SrTiO3 기판 위에 증착된 Bi4Ti3O12 박막의 결정구조 및 배향에 따른 강유전 특성 (Ferroelectric Properties of Bi4Ti3O12 Thin Films Deposited on Si and SrTiO3 Substrates According to Crystal Structure and Orientation)

  • 이명복
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.543-548
    • /
    • 2018
  • Ferroelectric $Bi_4Ti_3O_{12}$ films were deposited on $SrTiO_3(100)$ and Si(100) substrate by using conductive $SrRuO_3$ films as underlayer, and their ferroelectric and electrical properties were investigated depending on crystal structure and orientation. C-axis oriented $Bi_4Ti_3O_{12}$ films were grown on well lattice-matched pseudo-cubic $SrRuO_3$ films deposited on $SrTiO_3(100)$ substrate, while random-oriented polycrystalline $Bi_4Ti_3O_{12}$ films were grown on $SrRuO_3$ films deposited on Si(100) substrate. The random-oriented polycrystalline film showed a good ferroelectric hysteresis property with remanent polarization ($P_r$) of $9.4{\mu}C/cm^2$ and coercive field ($E_c$) of 84.9 kV/cm, while the c-axis oriented film showed $P_r=0.64{\mu}C/cm^2$ and $E_c=47kV/cm$ in polarizaion vs electric field curve. The c-axis oriented $Bi_4Ti_3O_{12}$ film showed a dielectric constant of about 150 and lower thickness dependence in dielectric constant compared to the random-oriented film. Furthermore, the c-axis oriented $Bi_4Ti_3O_{12}$ film showed leakage current lower than that of the polycrystalline film. The difference of ferroelectric properties in two films was explained from the viewpoint of depolarization effect due to orientation of spontaneous polarization and layered crystal structure of bismuth-base ferroelectric oxide.