• Title/Summary/Keyword: $SnO_2$film

Search Result 467, Processing Time 0.025 seconds

Effects of ZnO addition on Electrical Resistivity and Optical Transmittance of ITO Thin Film (ITO 박막의 전기저항과 광투과도 특성에 미치는 ZnO 첨가 효과)

  • Chae, Hong-Choi;Hong, Joo-Wha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.367-373
    • /
    • 2007
  • [ $In_2O_3-ZnO(IZO)$ ] and $In_2O_3-ZnO-SnO_2(IZTO)$ thin films were prepared on EAGLE 2000 glass webs in a Ar gas by RF-Magnetron sputtering. Electrical resistivity and optical transmittance of the films were investigated. IZO, IZTO film showed excellent optical transmittance of 85 % at the visible $400{\sim}$780 nm wavelength. Electrical properties of IZO film have $6.50{\times}10^{-4}{\Omega}cm$ (95 $In_2O_3$ : 5 ZnO wt.%) and $5.20{\times}10^{-4}{\Omega}cm$ (90 : 10 wt.%), IZTO film have $8.00{\times}10^{-4}{\Omega}cm$ (90 $In_2O_3$ : 3 ZnO : 7 $SnO_2$ wt.%) and $6.50{\times}10^{-4}{\Omega}cm$ (90 : 7 : 3 wt.%). Substitution of SnO to ZnO in ITO films showed slightly lower electrical conductivity than ITO film but showed similar optical transmittance.

Analysis on the Field Effect Mobility Variation of Tin Oxide Thin Films with Oxygen Partial Pressure (산소 분압에 따른 산화주석 박막의 전계효과 이동도 변화 분석)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.350-355
    • /
    • 2014
  • Bottom-gate tin oxide ($SnO_2$) thin film transistors (TFTs) were fabricated on $N^+$ Si wafers used as gate electrodes. 60-nm-thick $SnO_2$ thin films acting as active layers were sputtered on $SiO_2/Al_2O_3$ films. The $SiO_2/Al_2O_3$ films deposited on the Si wafers were employed for gate dielectrics. In order to increase the resistivity of the $SnO_2$ thin films, oxygen mixed with argon was introduced into the chamber during the sputtering. The mobility of $SnO_2$ TFTs was measured as a function of the flow ratio of oxygen to argon ($O_2/Ar$). The mobility variation with $O_2/Ar$ was analyzed through studies on crystallinity, oxygen binding state, optical properties. X-ray diffraction (XRD) and XPS (X-ray photoelectron spectroscopy) were carried out to observe the crystallinity and oxygen binding state of $SnO_2$ films. The mobility decreased with increasing $O_2/Ar$. It was found that the decrease of the mobility is mainly due to the decrease in the polarizability of $SnO_2$ films.

Relationship between Film Density and Electrical Properties on D.C. Magnetron Reactive Sputtered Sn-doped ${In_2}{O_3}$Films (D.C. 마그네트론 반응성 스퍼터링법에 의한 Sn-doped ${In_2}{O_3}$ 박막의 밀도와 전기적 특성과의 관계)

  • 이정일;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.686-692
    • /
    • 2000
  • Tin-doped In2O3 (ITO) films were fabricated using a d.c. magnetron reactive sputteirng of a In-10 wt% Sn alloy target in an Ar and O2 gas mixture. To understand the behavior of the carrier mobility in ITO films with O2 partial pressure, the resistivity, carrier concentration and mobility, film density, and intrinsic stress in the films were measured with O2 partial pressure. It was found experimentally that the carrier mobility increased rapidly as the film density increased. In the ITO film with the density close to theoretical one, the mean free path was the same as the columnar diameter. This indicated that the mobility in ITO films was strongly influenced by the crystall size. However, in the case where the film density was smaller than a theoretical density, the mean free paths were also smaller the columnar diameter. It was analyzed that the electron scattering at pores and holes within the crystalline was the major obstacle for electron conduction in ITO films. The measurement of intrinsic stress in ITO films also made it clear that the density of ITO films was controlled by the bombardment of oxygen neutrals on the growing film.

  • PDF

Study of Dry Etching of SnO thin films using a Inductively Coupled Plasma (Inductively Coupled Plasma를 이용한 SnO 박막의 식각 특성 연구)

  • Kim, Su-Kon;Park, Byung-Ok;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.98-103
    • /
    • 2016
  • The dry etching characteristics of SnO thin films were investigated using inductively coupled plasma (ICP) in Ar, $CF_4$, $Cl_2$ chemistries. the SnO thin films were deposited by reactive rf magnetron sputtering with Sn metal target. In order to study the etching rates of SnO, the processing factors of processing pressure, source power, bias power, and etching gas were controlled. The etching behavior of SnO films under various conditions was obtained and discussed by comparing to that of $SiO_2$ films. In our results, the etch rate of SnO film was obtained as 94nm/min. The etch rates were mainly affected by physical etching and the contribution of chemical etching to SnO films appeared relatively week.

Development of Methane Gas Sensor by Various Powder Preparation Methods

  • Min, Bong-Ki;Park, Soon-Don;Lee, Sang-Ki
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.125-130
    • /
    • 1999
  • After $SnO_2$ fine powder by precipitation method, Ca as crystallization inhibitor and Pd as catalyst were added to $SnO_2$ raw material by various methods. Thick film device was fabricated on the alumina substrate by mixing ethylene glycol and such mixed powders. The sensing characteristics of the device for methane gas were investigated. The most excellent gas sensing property was shown by the thick film device fabricated by Method 3 in which Ca and Pd doped $SnO_2$ powder is prepared by mixing $SnO_2$ powder, 0.1 wt% Ca acetate and 1 wt% $PdCl_2$ in deionized water and by calcining the mixture, after $Sn(OH)_4$ is dried at $110^{\circ}C$ for 36h. The sensitivity of the sensor fabricated with $SnO_2$-0.1 wt%Ca acetate-1wt%$PdCl_2$ powder heat-treated at $700^{\circ}C$ for 1h was about 86% for 5,000 ppm methane in air at $350^{\circ}C$ of the operating temperature. Response time and recovery were also excellent.

  • PDF

Conduction Noise Absorption by Sn-O Thin Films on Microstrip Lines (마이크로스트립 선로에서 Sn-O 박막의 전도노이즈 흡수 특성)

  • Kim, Sung-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.329-333
    • /
    • 2011
  • To develop wide-band noise absorbers with a special design for low-frequency performance, this study proposes a tin oxide (Sn-O) thin films as the noise absorbing materials in a microstrip line. Sn-O thin films were deposited on polyimide film substrates by reactive sputtering of the Sn target under flowing $O_{2}$ gas, exhibiting a wide variation of surface resistance (in the range of $10^{0}-10^{5}{\Omega}$) depending on the oxygen partial pressure during deposition. The microstrip line with characteristic impedance of $50\Omega$ was used for the measurement of noise absorption by the Sn-O films. The reflection parameter $(S_{11})$ increased with a decrease of surface resistance due to an impedance mismatch at the boundary between the film and the microstrip line. Meanwhile, the transmission parameter $(S_{21})$ diminished with a decrease of surface resistance resulting from an Ohmic loss of the Sn-O films. The maximum noise absorption predicted at an optimum surface resistance of the Sn-O films was about $150{\Omega}$. For this film, greater power absorption is predicted in the lower frequency region (about 70% at 1 GHz) than in conventional magnetic sheets of high magnetic loss, indicating that Ohmic loss is the predominant loss parameter for the conduction noise absorption in the low frequency band.

Synthesis and Characterization of SnO2 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition Using SnCl4 Precursor and Oxygen Plasma

  • Lee, Dong-Gwon;Kim, Da-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.254-254
    • /
    • 2016
  • Tin dioxide (SnO2) thin film is one of the most important n-type semiconducting materials having a high transparency and chemical stability. Due to their favorable properties, it has been widely used as a base materials in the transparent conducting substrates, gas sensors, and other various electronic applications. Up to now, SnO2 thin film has been extensively studied by a various deposition techniques such as RF magnetron sputtering, sol-gel process, a solution process, pulsed laser deposition (PLD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) [1-6]. Among them, ALD or plasma-enhanced ALD (PEALD) has recently been focused in diverse applications due to its inherent capability for nanotechnologies. SnO2 thin films can be prepared by ALD or PEALD using halide precursors or using various metal-organic (MO) precursors. In the literature, there are many reports on the ALD and PEALD processes for depositing SnO2 thin films using MO precursors [7-8]. However, only ALD-SnO2 processes has been reported for halide precursors and PEALD-SnO2 process has not been reported yet. Herein, therefore, we report the first PEALD process of SnO2 thin films using SnCl4 and oxygen plasma. In this work, the growth kinetics of PEALD-SnO2 as well as their physical and chemical properties were systemically investigated. Moreover, some promising applications of this process will be shown at the end of presentation.

  • PDF

The Enhancement of Selectivity in Thick Film SnO2 Gas Sensors by Additives and Pattern Recognition (첨가제 및 패턴인식에 의한 후막 SnO2 가스센서의 선택성 향상)

  • 정해원;김종명;박희숙;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1073-1077
    • /
    • 2003
  • The Sn $O_2$-based gas sensors can detect inflammable and toxic gases of low concentration by the modulation of surface resistance, but they lack in selectivity on the whole. To give selectivity to the Sn $O_2$-based gas sensors, studies on the sensing mechanism, selective gas sensing materials and signal processing techniques are demanded. Ethanol (C$_2$ $H_{5}$OH) and acetonitrile ($CH_3$CN) were confirmed to undergo catalytic oxidation on Sn $O_2$ by gas chromatography. PdCl$_2$-doped Sn $O_2$ showed excellent sensitivity to ethanol and acetonitrile, while La$_2$ $O_3$-doped Sn $O_2$ showed excellent sensitivity to ethanol, but poor sensitivity to acetonitrile. Using these two sensors and pattern recognition, the selectivity to acetonitrile is greatly enhanced. The minimum detection level of acetonitrile was 15 ppm in air and 20 to 100 ppm when exposed to interfering gases together with acetonitrile.

Figure of merit and bending characteristics of Mn-SnO2/Ag/Mn-SnO2 tri-layer film (Mn-SnO2/Ag/Mn-SnO2 3중 다층막의 성능지수와 밴딩 특성)

  • Cho, Youngsoo;Jang, Guneik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.190-195
    • /
    • 2021
  • Typical Mn-SnO2/Ag/Mn-SnO2 tri-layer films were prepared on a PET substrate by RF/DC magnetron sputtering method at room temperature. Based on EMP simulation, the thicknesses of the top and bottom Mn-doped SnO2 layers were kept at 40 nm and the Ag layer was maintained at 13 nm for continuous electrical conduction. The experimentally measured optical transmittances at 550 nm wavelength were ranged from 82.9 to 88.1 % and sheet resistances were varied from 5.9 to 6.9 Ω/☐. The highest value of figure of merit, ϕTC was 48.1 × 10-3 Ω-1. Based on bending test under 4 and 5 mm of inner and outer curvature radius condition, tri-layer film resistance varies only by approximately 1.5 % after 10,000 bending cycles, showing excellent mechanical flexibility.

Characterization of ZnO Nanorods and SnO2-CuO Thin Film for CO Gas Sensing

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.305-309
    • /
    • 2012
  • In this study, ZnO nanorods and $SnO_2$-CuO heterogeneous oxide were grown on membrane-type gas sensor platforms and the sensing characteristics for carbon monoxide (CO) were studied. Diaphragm-type gas sensor platforms with built-in Pt micro-heaters were made using a conventional bulk micromachining method. ZnO nanorods were grown from ZnO seed layers using the hydrothermal method, and the average diameter and length of the nanorods were adjusted by changing the concentration of the precursor. Thereafter, $SnO_2$-CuO heterogeneous oxide thin films were grown from evaporated Sn and Cu thin films. The average diameters of the ZnO nanorods obtained by changing the concentration of the precursor were between 30 and 200 nm and the ZnO nanorods showed a sensitivity value of 21% at a working temperature of $350^{\circ}C$ and a carbon monoxide concentration of 100 ppm. The $SnO_2$-CuO heterogeneous oxide thin films showed a sensitivity value of 18% at a working temperature of $200^{\circ}C$ and a carbon monoxide concentration of 100 ppm.