• Title/Summary/Keyword: $SnO_2$film

Search Result 467, Processing Time 0.025 seconds

Gas-sensing Characteristics of $WO_3$-$SnO_2$Thin-film Sensors ($WO_3$-$SnO_2$박막 센서의 가스감지특성)

  • 유광수;김태송
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1180-1186
    • /
    • 2001
  • W $O_3$-Sn $O_2$thin film sensors with approximately 1${\mu}{\textrm}{m}$ in thickness were fabricated by using a high-vacuum resistance-heating evaporator, were annealed at 50$0^{\circ}C$ for 4 hours in air, and then their crystallinities and surface microstructures were analyzed. As results of gas-sensing characteristics to oxidizing gas, N $O_2$, and reducing gas, CO, of 100 ppm, the highest gas sensitivities (S= $R_{gas}$/ $R_{air}$) were the W $O_3$thin-film sensor measured at 25$0^{\circ}C$ for N $O_2$(S≒1000) and the Sn $O_2$thin-film sensor measured at 15$0^{\circ}C$ to 25$0^{\circ}C$ range for CO (S≒0.25), respectively.ely.

  • PDF

Fabrication and Characteristics of SnO2 Thick Film Devices for Detection of NO2 (NO2 감지용 SnO2 후막소자의 제작 및 특성)

  • Sohn, Jong Rack;Han, Jong Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.332-338
    • /
    • 1997
  • $SnO_2$ as raw material of sensor for $NO_2$ detection was prepared by precipitating $SnCl_4$ solution with aqueous ammonia followed by calcining in air. The characterization of $SnO_2$ was carried out using FT-IR and XRD, and $SnO_2$ thick film sensor was fabricated by screen-printing method. The particle size of $SnO_2$ calcined at higher temperature increased due to the growth of crystalline. $SnO_2$ sensor fabricated by using $SnO_2$ sample calcined at $1000^{\circ}C$ followed by heat treatment at $700^{\circ}C$ exhibited excellent sensing characteristics and selectivity for $NO_2$ gas at the operating temperature of $250^{\circ}C$.

  • PDF

Properties Evaluation of $SnO_2$ : Sb transparent conductive films by $SiO_2$ barrier ($SiO_2$ barrier에 따른 $SnO_2$ : Sb 투명전도막의 특성고찰)

  • 김범석;김창열;임태영;오근호
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.190-190
    • /
    • 2003
  • 여러원소 (Sb, F 등)를 도핑한 SnO$_2$ 투명전도막은 여러 가지 훌륭한 특성으로 Solar cell, heat mirrors, gas sensors, liquid crystal displays, thick film resistor 등과 같이 넓은 범위에서 응용되고 있다. 본 연구에서는 Sb 도핑된 Tin Oxide films이 Sol-gel dip coating법에 의해 준비되었다. SnO$_2$:Sb 용액은 SnC1$_2$ 와 SbC1$_3$ Power를 알코올에 용해하여 Ethylene glycol 와 Citric acid를 첨가하여 합성하였다. 막의 상형성은 XRD와 SEM(Scanning electron microscope)에 의해서 분석되었으며, 특성분석은 투과율(UV/VIS Spectrophotometer)과 표면전기저항(four point probe)으로 분석되었다. SiO$_2$ barrier이 SnO$_2$:Sb 막의 특성에 미치는 영향을 확인하기 위하여 XPS(X-ray photoelectron spectroscopy) 분석이 적용되었다.

  • PDF

Electrical Behaviors of SnO2 Thin Films in Hydrogen Atmosphere (수소가스분위기하에서의 SnO2 박막의 전기적 거동)

  • 김광호;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.341-348
    • /
    • 1988
  • Thin films of tin-oxide were prepared by chemical vapor deposition technique using the direct of SnCl4. Resistivity and carrier concentration of deposited SnO2 thin film were measured by 4-point probe method and Hall effect measurement. The results showed the remarkable dependence of electrical properties on the deposition temperature. As the deposition temperature increased, resistivity of deposited film initially decreased to a minimum value of ~10-3$\Omega$cm at 50$0^{\circ}C$, and then rapidly increased to ~10$\Omega$cm at $700^{\circ}C$. Electrical conductance of these films was measured in exposure to H2 gas. It was found that gas sensitivity was affected combination of film thickness and intrinsic resistivity of deposited film. Gas sensitivity increased with decrease of film thickness. Fairly high sensitivity to H2 gas was obtained for the film deposited at $700^{\circ}C$. Optimum operation temperature of sensing was 30$0^{\circ}C$ for H2 gas.

  • PDF

Preparation and Characterization of $SnO_2$ Thin Film by Atomic Layer Deposition

  • Kwack, Young-Jin;Choi, Woon-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.250-250
    • /
    • 2009
  • Thin film of $SnO_2$ was fabricated from plasma enhanced atomic layer deposition technology with bubbler type injector system by using TEMASn (tetrakisethylmethylamino tin) precursor. Mostly crystalline of $SnO_2$ films can be obtained with oxygen plasma and with water at relatively low temperature of $150^{\circ}C$. $SnO_2$ was deposited as an uniform rate of $1.0A^{\circ}$/cycle. In order to obtain uniform film, a seed oxide material was used before TEMASn deposition in ALD process. The process parameters were controlled to obtain dense thin film by atomic deposition methodology. The morphology and characterization of thin film with optimized process condition will be discussed.

  • PDF

Effects of Substrate on the Characteristics of SnO2 Thin Film Gas Sensors (기판 종류에 따른 박막형 SnO2 가스 센서의 응답특성)

  • Kim, Seon-Hoon;Park, Shin-Chul;Kim, Jin-Hyuk;Moon, Jong-Ha;Lee, Byung-Teak
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.111-114
    • /
    • 2003
  • Effects of substrate materials on the microstructure and the sensitivity of $SnO_2$thin film gas sensors have been studied. Various substrates were studied, such as oxidized silicon, sapphire, polished alumina, and unpolished alumina. It was observed that strong correlation exists between the electrical resistance and the CO gas sensitivity of the manufactured sensors and the surface roughness of $SnO_2$thin films, which in turn was related to the surface roughness of the original substrates. X$SnO_2$thin film gas sensor on unpolished alumina with the highest surface roughness showed the highest initial resistance and CO gas sensitivity. The transmission electron microscopy observation indicated that shape and size of the columnar microstructure of the thin films were not critically affected by the type of substrates.

Consideration on $H_2S$ Sensing Mechanism of CuO-$SnO_2$ Thick Film through the Analysis of the Temperature-Electrical Resistance Characteristics (온도-전기저항 특성 해석을 통한 CuO-$SnO_2$ 후막 소자의 $H_2S$ 감지기구 고찰)

  • 유도준;준타마키;박수잔;노보류야마조에
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.379-384
    • /
    • 1996
  • The H2S sensing mechanism of CuO-SnO2 was confirmed by analyzing the electrical-resistance variation with temperature under an H2S atmosphere. While the resistance of CuO-SnO2 thick film at N2+H2S atmosphere was almost invariant with change in temperature it increased with increasing temperature for air +H2S atmos-phere. This behavior was analyzed using an equation derived from a basic assumption based on the H2S sensing mechanism proposed before. the experimental results are sufficiently explained with the equation derived which showed that the H2S sensing mechanism was reasonable. The equation also gave a detailed analysis and physical meaning to the behavior of the resistance variation with change in H2S concentration.

  • PDF

CMP properties of $SnO_2$ thin film (가스센서 $SnO_2$ 박막의 광역평탄화 특성)

  • Choi, Gwon-Woo;Lee, Woo-Sun;Park, Jeng-Min;Choi, Seok-Jo;Park, Do-Sung;Kim, Nam-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1600-1604
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. The effect of alternative commerical slurries pads, and post-CMP cleaning alternatives are discuess, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. we investigated the performance of $SnO_2$-CMP process using commonly used silica slurry, ceria slurry, tungsten slurry. This study shows removal rate and nonuniformity of $SnO_2$ thin film used to gas sensor by using Ceria, Silica, W-Slurry after CMP process. This study also shows the relation between partical size and CMP with partical size analysis of used slurry.

  • PDF

CMP properties of $SnO_2$ thin film ($SnO_2$ 박막의 CMP 특성)

  • Choi, Gwon-Woo;Lee, Woo-Sun;Ko, Pil-Ju;Kim, Tae-Wan;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.93-96
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. The effect of alternative commerical slurries pads, and post-CMP cleaning alternatives are discuess, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. we investigated the performance of $SnO_2$-CMP process using commonly used silica slurry, ceria slurry, tungsten slurry. This study shows removal rate and nonuniformity of $SnO_2$ thin film used to gas sensor by using Ceria, Silica, W-Slurry after CMP process. This study also shows the relation between partical size and CMP with partical size analysis of used slurry.

  • PDF

CMP properties of $SnO_2$ thin film by different slurry (슬러리 종류에 따른 $SnO_2$ 박막의 광역평탄화 특성)

  • Lee, Woo-Sun;Choi, Gwon-Woo;Ko, Pil-Ju;Kim, Wan-Tae;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.389-392
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. The effect of alternative commerical slurries pads, and post-CMP cleaning alternatives are discuess, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. we investigated the performance of $SnO_2$-CMP process using commonly used silica slurry, ceria slurry, tungsten slurry. This study shows removal rate and non-uniformity of $SnO_2$ thin film used to gas sensor by using Ceria, Silica, W-Slurry after CMP process. This study also shows the relation between particle size and CMP with particle size analysis of used slurry.

  • PDF