• Title/Summary/Keyword: %24SnO_2%24

Search Result 77, Processing Time 0.026 seconds

A Study on the Dielectric and Pyroelectric Properties of the PSS-PT-PZ Ceramics Added $MnO_2$ ($MnO_2$가 첨가될 PSS-PT-PZ 세라믹의 유전 및 초전특성에 관한 연구)

  • Lee, Sung-Gap;Ryu, Ki-Won;Lee, Young-Hie;Bae, Seon-Gi;Park, Chang-Yub
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.194-197
    • /
    • 1991
  • In this study, $(Pb_{0.99}La_{0.01})[(Sb_{1/2}Sn_{1/2})_{0.10}Ti_{0.25}Zr_{0.65}]O_3$, added $MnO_2$ (0-0.30[mol%]) ceramics were fabricated by the mixed oxide method. The sintering temperature and time were $1250[^{\circ}C]$, 2[hr], respectively. In the $(Pb_{0.99}La_{0.01})[(Sb_{1/2}Sn_{1/2})_{0.10}Ti_{0.25}Zr_{0.65}]O_3$ added $MnO_2$ (0.24[mol%]) specimens, relative dielectric constant and dielectric loss were minimum values 3.52, 0.003, respectively, and Curie temperature were highest values $256[^{\circ}C]$. Pyroelectric coefficient and voltage responsivity of the $(Pb_{0.99}La_{0.01})[(Sb_{1/2}Sn_{1/2})_{0.10}Ti_{0.25}Zr_{0.65}]O_3$, and added $MnO_2$ (0.24[mol%]) specimen were good values, $6.73{\times}10^{-8}[C/cm^2K],\;125[v/W]$, respectively. Figure of merit of pyroelectric current, voltage and detectivity of the specimen, $(Pb_{0.99}La_{0.01})[(Sb_{1/2}Sn_{1/2})_{0.10}Ti_{0.25}Zr_{0.65}]O_3$ added $MnO_2$ (0.24[mol%]) were good values $2.714{\times}10^{-8}[Ccm/J],\;7.706{\times}10^{-11}[Ccm/J],\;2.640{\times}10^{-8}[Ccm/J]$, respectively. Voltage responsivity of the $(Pb_{0.99}La_{0.01})[(Sb_{1/2}Sn_{1/2})_{0.10}Ti_{0.25}Zr_{0.65}]O_3$ added $MnO_2$ (0.24[mol%]) specimens were decreased with increasing the chopper frequency.

  • PDF

Gas Sensing Characteristics and Preparation of SnO2 Nano Powders (SnO2 나노 분말의 합성 및 가스 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.589-593
    • /
    • 2011
  • [ $SnO_2$ ]nano powders were prepared by solution reduction method using tin chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_4$) and NaOH. The $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $300^{\circ}C$ in air, respectively. XRD patterns of the $SnO_2$ nano powders showed the tetragonal structure with (110) dominant orientation. The particle size of $SnO_2$ nano powders at the ratio of $SnCl_2:N_2H_4$+NaOH= 1:6 was about 60 nm. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box. Sensitivity of $SnO_2$ gas sensor to 5 ppm $CH_4$gas and 5 ppm $CH_3CH_2CH_3$ gas was investigated for various $SnCl_2:N_2H_4$+NaOH proportion. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of $SnO_2$ sensors was observed at the $SnCl_2:N_2H_4$+NaOH= 1:8 and $SnCl_2:N_2H_4$+NaOH= 1:6, respectively. Response and recovery times of $SnO_2$ gas sensors prepared by $SnCl_2:N_2H_4$+NaOH= 1:6 was about 40 s and 30 s, respectively.

Structural and Electrical Properties of Ga-doped ZnO-SnO2 Films (Ga이 첨가된 ZnO-SnO2막의 구조적 및 전기적 특성)

  • Park, Ki-Cheol;Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.641-646
    • /
    • 2011
  • Ga-doped ZnO-$SnO_2$ (ZSGO) films were deposited by rf magnetron sputtering and their structural and electrical properties were investigated. In order to fabricate the target for sputtering, the mixture of ZnO, $SnO_2$ (1:1 weight ratio) and $Ga_2O_3$ (3.0 wt%) powder was calcined at $800^{\circ}C$ for 1 h. The substrate temperature was varied from room temperature to $300^{\circ}C$. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The optical transmittances of the films were measured and the optical energy band gaps were obtained from the absorption coefficients. The resistivity variation with substrate temperature was measured. Auger electron spectroscopy was employed to find the atomic ratio of Zn, Sn, Ga and O in the film deposited at room temperature. ZSGO films exhibited the optical transmittance in the visible region of more than 80% and resistivity higher than $10\;{\Omega}cm$.

Effect of $SnO_2$ addition on the growth of $Y_1Ba_2Cu_3O_{7-\delta}$phase in Y-Ba-Cu-O system (Y-Ba-Cu-O계에서 $Y_1Ba_2Cu_3O_{7-\delta}$상의 성장에 미치는 $SnO_2$의 효과)

  • Im, Dae-Ho;Song, Myeong-Yeop;Won, Dong-Yeon;Hong, Gye-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.428-438
    • /
    • 1994
  • In order to investigate the effect of $SnO_2$ on the growth of 123 phase in Y-Ba-Cu-0 system, O.1Sn-doped 123+Sn compact was coupled with Sn-free 123 compact by placing the former on the latter. In case of the coupled samples which were held at $1100^{\circ}C$ for 24hr and then at $970^{\circ}C$ for lhr, 123 phase grew from the surface of O.1Sn-doped 123+Sn compact toward the inner of Sn-free 123 compact. In case of the coupled samples which were held at $1100^{\circ}C$ for 48hr and then at $970^{\circ}C$ for lhr, it was not the 123 phase but Ba-Y-Sn grains that were observed. Ba-Y-Sn grains with a shape of bar was composed of Ba : Y : Sn=5 : 3 : 2, approximately.

  • PDF

Effect of an Au Nanodot Nucleation Layer on CO Gas Sensing Properties of Nanostructured SnO2 Thin Films

  • Hung, Nguyen Le;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.152-158
    • /
    • 2014
  • We report the effect of the fabric of the surface microstructure on the CO gas sensing properties of $SnO_2$ thin films deposited on self-assembled Au nanodots ($SnO_2$/Au) that were formed on $SiO_2/Si$ substrates. We characterized structural and morphological properties, comparing them to those of $SnO_2$ thin films deposited directly onto $SiO_2/Si$ substrates. We observed a significant enhancement of CO gas sensing properties in the $SnO_2$/Au gas sensors, specifically exhibiting a high maximum response at $200^{\circ}C$ and quite a low detection limit of 1 ppm level in dry air. In particular, the response of the $SnO_2/Au$ gas sensor was found to reach the maximum value of 32.5 at $200^{\circ}C$, which is roughly 27 times higher than the response (~1.2) of the $SnO_2$ gas sensor obtained at the same operating temperature of $200^{\circ}C$. Furthermore, the $SnO_2/Au$ gas sensors displayed very fast response and recovery behaviors. The observed enhancement in the CO gas sensing properties of the $SnO_2/Au$ sensors is mainly ascribed to the formation of a nanostructured morphology in the active $SnO_2$ layer having a high specific surface-reaction area by the insertion of a nanodot form of Au nucleation layer.

Application of Metal Oxide Nanofiber for Improving Photovoltaic Properties of Dye-Sensitized Solar Cells (염료감응형 태양전지의 광전기적 특성 개선을 위한 금속산화물 나노파이버의 응용)

  • Dong, Yong Xiang;Jin, En Mei;Jeong, Sang Mun
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.249-254
    • /
    • 2018
  • In order to improve the photo conversion efficiency (${\eta}$) of dye-sensitized solar cells (DSSCs), the electrospun $TiO_2$, $SiO_2$, $ZrO_2$ and $SnO_2$ nanofibers were added into the hydrothermally prepared $TiO_2$ nanoparticles for application to a photoelectrode for DSSCs. The $TiO_2$ nanofiber added photoelectrode exhibited a higher photo current density ($J_{sc}$) compared to the bare $TiO_2$ nanoparticles, which is caused from acceleration of the transfer of excited electron from dye molecule due to the nanofiber structure. The DSSCs with $SiO_2$ nanofibers shows a higher open circuit voltage ($V_{oc}$) of 0.67 V and the highest photo conversion efficiency was found to be 6.24%.

NO2 gas sensor using an AlGaN/GaN Heterostructure FET with SnO2 catalyst deposited by ALD technique (원자막증착법(ALD) SnO2 촉매를 적용한 AlGaN/GaN 이종접합 트랜지스터 NO2 가스센서)

  • Yang, Suhyuk;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1117-1121
    • /
    • 2020
  • In this work, it was confirmed that a SnO2 catalyst deposited by an atomic layer deposition(ALD) process can be employed in AlGaN/GaN heterostructure FET to detect NO2 gas. The fabricated HFET sensors on AlGaN/GaN-on-Si platform demonstrated that the devices with or without n-situ SiN have sensitivity of 5.5 % and 38 % at 200 ℃, respectively with response to 100 ppm-NO2.

Optical and Electronic Properties of SnO2 Thin Films Fabricated Using the SILAR Method

  • Jang, Joohee;Yim, Haena;Cho, Yoon-Ho;Kang, Dong-Heon;Choi, Ji-Won
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.364-367
    • /
    • 2015
  • Tin oxide thin films were fabricated on glass substrates by the successive ionic layer adsorption and reaction (SILAR) method at room temperature and ambient pressure. Before measuring their properties, all samples were annealed at $500^{\circ}C$ for 2 h in air. Film thickness increased with the number of cycles; X-ray diffraction patterns for the annealed $SnO_2$ thin films indicated a $SnO_2$ single phase. Thickness of the $SnO_2$ films increased from 12 to 50 nm as the number of cycles increased from 20 to 60. Although the optical transmittance decreased with thickness, 50 nm $SnO_2$ thin films exhibited a high value of more than 85%. Regarding electronic properties, sheet resistance of the films decreased as thickness increased; however, the measured resistivity of the thin film was nearly constant with thickness ($3{\times}10^{-4}ohm/cm$). From Hall measurements, the 50 nm thickness $SnO_2$ thin film had the highest mobility of the samples ($8.6cm^2/(V{\cdot}s)$). In conclusion, optical and electronic properties of $SnO_2$ thin films could be controlled by adjusting the number of SILAR cycles.

Study of the effect of vacuum annealing on sputtered SnxOy thin films by SnO/Sn composite target (SnO/Sn 혼합 타겟으로 스퍼터 증착된 SnO 박막의 열처리 효과)

  • Kim, Cheol;Cho, Seungbum;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.43-48
    • /
    • 2017
  • Conductive $Sn_xO_y$ thin films were fabricated via RF reactive sputtering using SnO:Sn (80:20 mol%) composite target. The composite target was used to produce a chemically stable composition of $Sn_xO_y$ thin film while controlling structural defects by chemical reaction between tin and oxygen. During sputtering pressure, RF power, and substrate temperature were fixed, and oxygen partial pressure was varied from 0% to 12%. Annealing process was carried out at $300^{\circ}C$ for 1 hour in vacuum. Except $P_{O2}=0%$ sample, all samples showed the transmittance of 80~90% and amorphous phase before and after annealing. Electrically stable p-type $Sn_xO_y$ thin film with high transmittance was only obtained from the oxygen partial pressure at 12%. The carrier concentration and mobility for the $P_{O2}=12%$ were $6.36{\times}10^{18}cm^{-3}$ and $1.02cm^2V^{-1}s^{-1}$ respectively after annealing.

A simple route for synthesis of SnO2 from copper alloy dross

  • Lee, Jung-Il;Lee, Bo Seul;Lee, Ji Young;Shin, Ji Young;Kim, Tae Wan;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.84-87
    • /
    • 2014
  • Separation/recovery of valuable metals such as zinc, nickel or tin from copper alloy dross has recently attracted from the viewpoints of environmental protection and resource recycling. In this study, preliminary investigation on separation of tin (Sn) from copper alloy dross using selective dissolution method was performed. The tin in the copper alloy dross did not dissolve in an aqueous nitric acid solution which could allow the concentration/separation of tin from the copper alloy dross. Precipitation of tin as $H_2SnO_3$ (meta stannic acid)occurred in the solution and transformed to tin dioxide ($SnO_2$) after drying process. The dried sample was heat-treated at low temperature and its crystal structure, surface morphology and chemical composition were investigated.