• Title/Summary/Keyword: $SnO_{2}$

Search Result 1,498, Processing Time 0.029 seconds

Synthesis and Characterization of SnO2-CoO/carbon-coated CoO Core/shell Nanowire Composites (SnO2-CoO/carbon-coated CoO core/shell 나노선 복합체의 합성 및 구조분석)

  • Lee, Yu-Jin;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.360-365
    • /
    • 2014
  • $SnO_2-CoO$/carbon-coated CoO core/shell nanowire composites were synthesized by using electrospinning and hydrothermal methods. In order to obtain $SnO_2-CoO$/carbon-coated CoO core/shell nanowire composites, $SnO_2-Co_3O_4$ nanowire composites and $SnO_2-Co_3O_4$/polygonal $Co_3O_4$ core/shell nanowire composites are also synthesized. To demonstrate their structural, chemical bonding, and morphological properties, field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were carried out. These results indicated that the morphologies and structures of the samples were changed from $SnO_2-Co_3O_4$ nanowires having cylindrical structures to $SnO_2-Co_3O_4/Co_3O_4$ core/shell nanowires having polygonal structures after a hydrothermal process. At last, $SnO_2-CoO$/carbon-coated CoO core/shell nanowire composites having irregular and high surface area are formed after carbon coating using a polypyrrole (PPy). Also, there occur phases transformation of cobalt phases from $Co_3O_4$ to CoO during carbon coating using a PPy under a argon atmosphere.

Synthesis of SnO2Microrods by the Thermal Evaporation of Sn Powders

  • Kong, Myung-Ho;Kim, Hyoun-Woo
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.123-127
    • /
    • 2008
  • The production of tin oxide ($SnO_2$) microrods on iridium (Ir)-coated substrates was achieved through the thermal evaporation of Sn powders in which a sufficiently high $O_2$ partial pressure was employed. Scanning electron microscopy revealed that the product consisted of microrods with diameters that ranged from 0.9 to $40\;{\mu}m$. X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction indicated that the microrods were $SnO_2$ with a rutile structure. As the microrod tips were free of metal particles, it was determined that the growth of $SnO_2$ microrods via the present route was dominated by a vapor-solid mechanism. The thickening of rod-like structures was related to the utilization of sufficiently high $O_2$ partial pressure during the synthesis process, whereas low $O_2$ partial pressure facilitated the production of thin rods.

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • Sin, Sae-Yeong;Mun, Yeon-Geon;Kim, Ung-Seon;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF

Fabrication of SnO2-TiO2-based Thick Films for Hydrocarbon Gas Sensors (탄화수소계 가스센서를 위한 SnO2-TiO2계 후막의 제조)

  • 정완영;박정은;강봉휘;이덕동
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.721-729
    • /
    • 1991
  • SnO2-TiO2(Pt or Pd), as raw material for hydrocarbon gas sensors, was prepared by a coprecipitation method. The SnO2-TiO2-based thick film gas sensors were made by screen printing technique. The titanium dioxide synthesized was shown to be anatase structure from XRD peaks and was transformed to rutile structure between 700$^{\circ}C$ and 1000$^{\circ}C$. Titanium dioxide in SnO2-TiO2 thick films devices plays a very important role in the enhancement of the sensitivity to CH4 and C4H10. In the case of SnO2-TiO2(Pt) sensors, titanium dioxide that was rutile structure enhanced the sensitivity of the thick film to CH4. Platinum added to the raw powder at coprecipitation (as chloroplatinic acid VI hydrate) improved the gas sensitivity to hydrocarbon gases. Therefore, it is expected that the SnO2-TiO2(Pt) thick film sensors fabricated in this experiment could be put into practical use as LPG (primary component : C4H10 and C3H8) and LNG (primary component : CH4) sensors.

  • PDF

Semiconductor type micro gas sensor for $H_2$ detection using a $SnO_2-Ag_2O-PtO_x$ system by screen printing technique (스크린 프린팅 기법을 이용한 $SnO_2-Ag_2O-PtO_x$계 반도체식 마이크로 수소 가스센서에 관한 연구)

  • Kim, Il-Jin;Han, Sang-Do;Lee, Hi-Deok;Wang, Jin-Suk
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2006
  • Thick film $H_2$ sensors were fabricated using $SnO_2$ loaded with $Ag_2O$ and $PtO_x$. The composition that gave the highest sensitivity for $H_2$ was in the weight% ratio of $SnO_2 : PtO_x : Ag_2O$ as 93 : 1 : 6. The nano-crystalline powders of $SnO_2$ synthesized by sol-gel method were screen printed with $Ag_2O$ and $PtO_x$ on alumina substrates. The fabricated sensors were tested against gases like $H_2$, $CH_4$, $C_3H_8$, $C_2H_5OH$ and $SO_2$. The composite material was found sensitive against $H_2$ at the working temperature $130^{\circ}C$, with minor interference of other gases. The $H_2$ gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on $SnO_2-Ag_2O-PtO_x$ system exhibited the high performance, high selectivity and very short response time to $H_2$ at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of $H_2$.

Characteristics of SnO2 Thick Film Gas Sensors Doped with Catalyst (촉매가 첨가된 SnO2 후막형 가스센서의 특성 연구)

  • Lee, Don-Kyu;Yu, Yoon-Sick;Lee, Ji-Young;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.622-626
    • /
    • 2010
  • Cu doped $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $500^{\circ}C$ in air, respectively. Structural properties of $SnO_2$ by X-ray diffraction showed (110), (101) and (211) dominant tetragonal phase. The effects of catalyst Cu in $SnO_2$-based gas sensors were investigated. Sensitivity of $SnO_2$:Cu sensors to 2,000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas was investigated for various Cu concentration. The highest sensitivity to $CO_2$ gas and $H_2S$ gas of Cu doped $SnO_2$ gas sensors was observed at the 8 wt% and 12 wt% Cu concentration, respectively. The improved sensitivity in the Cu doped $SnO_2$ gas sensors was explained by decrease of electron depletion region in Cu and $SnO_2$ junction, and increase of reactive oxygen and surface area in the $SnO_2$.

The Electrochemical Properties of SnO2 as Cathodes for Lithium Air Batteries

  • Lee, Yoon-Ho;Park, Heai-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.164-171
    • /
    • 2019
  • Nano-sized $SnO_2$ powders were synthesized via a solvent thermal reaction using $SnClO_4$, NaOH, and ethylene glycol at $150^{\circ}C$. TGA, SEM, FT-IR, XRD, and Potentiostat/Galvanostat were employed to investigate the chemical and electrochemical characteristics of the synthesized $SnO_2$. The structure of $SnO_2$ was amorphous, and when heat treated at $500^{\circ}C$, it was transformed into a crystalline structure. The morphology obtained by SEM micrographs of the as-synthesized $SnO_2$ showed powder features that had diameters ranging 100 to 200 nm. The electrochemical performance of the crystalline $SnO_2$ as a Li-air battery cathode was better than that of the amorphous $SnO_2$. The specific capacity of the crystalline $SnO_2$ was at least 350 mAh/g at 10 mA/g discharge rate. However, there was some capacity loss of all the cells during the consecutive cycles. Keywords : Lithium-Air Battery.

The Reactivity for the SO2 Reduction with CO and H2 over Sn-Zr Based Catalysts (Sn-Zr계 촉매 상에서 CO와 H2를 이용한 SO2 환원 반응특성)

  • Han, Gi Bo;Park, No-Kuk;Ryu, Si Ok;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.356-362
    • /
    • 2006
  • The $SO_2$ reduction using CO and $H_2$ over Sn-Zr based catalysts was performed in this study. Sn-Zr based catalysts with Sn/Zr molar ratio (0/1, 1/4, 1/1, 2/1, 3/1, 1/0) were prepared by the precipitation and co-precipitation method. The effect of the temperature on the reaction characteristics of the $SO_2$ reduction with a reducing agent such as $H_2$ and CO was investigated under the conditions of space velocity of $10,000ml/g_{-cat.}h$, $([CO(or\;H_2)]/[SO_2])$ of 2.0. As a result, the activity of Sn-Zr based catalysts were higher than $SnO_2$ and $ZrO_2$. The reactivity for the $SO_2$ reduction with CO was higher than that with $H_2$, and sulfur yield in the $SO_2$ reduction by $H_2$ was higher than that by CO. The reactivity for the $SO_2$ reduction with $H_2$ was increased with the reaction temperature regardless of Sn-Zr based catalyst with a Sn/Zr molar ratio. $SnO_2-ZrO_2$ (Sn/Zr=1/4) had highest activity at $550^{\circ}C$, in the $SO_2$ reduction with $H_2$ and $SO_2$ conversion of 94.4% and sulfur yield of 66.4% were obtained at $550^{\circ}C$. On the other hand, in the $SO_2$ reduction by CO, the reactivity was decreased with the increase over $325^{\circ}C$. At the optimal temperature of $325^{\circ}C$, $SO_2$ conversion and sulfur yield were about 100% and 99.5%, respectively, in the $SO_2$ reduction over $SnO_2-ZrO_2$ (Sn/Zr=3/1). Also, the $SO_2$ reduction using syngas with $CO/H_2$ ratio over $SnO_2-ZrO_2$ (Sn/Zr=2/1) was performed in order to investigate the application possibility of the simulated coal gas as the reductant in DSRP. As a result, the reactivity of the $SO_2$ reduction using syngas with $CO/H_2$ ratio was increased with increasing the CO content of syngas. Therefore, it could be known that DSRP using the simulated coal gas over Sn-Zr based catalyst is possible to be realized in IGCC system

A Study on the Annealing Effect of SnO Nanostructures with High Surface Area (높은 표면적을 갖는 SnO 나노구조물의 열처리 효과에 관한 연구)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.536-542
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is a well-known n-type semiconductor that shows change in resistance in the presence of gas molecules, such as $H_2$, CO, and $CO_2$. Considerable research has been done on $SnO_2$ semiconductors for gas sensor applications due to their noble property. The nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in the sensing of gas molecules. In this study, SnO nanoplatelets were grown densely on Si substrates using a thermal CVD process. The SnO nanostructures grown by the vapor transport method were post annealed to a $SnO_2$ phase by thermal CVD in an oxygen atmosphere at $830^{\circ}C$ and $1030^{\circ}C$. The pressure of the furnace chamber was maintained at 4.2 Torr. The crystallographic properties of the post-annealed SnO nanostructures were investigated by Raman spectroscopy and XRD. The change in morphology was confirmed by scanning electron microscopy. As a result, the SnO nanostructures were transformed to a $SnO_2$ phase by a post-annealing process.

Effect of the Particle Size of SnO2:Ni on Gas Sensing Properties (입자크기에 따른 SnO2:Ni 가스센서의 감응 특성)

  • Lee, Ji-Young;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.207-211
    • /
    • 2011
  • Ni 8 wt.%-doped tin oxide ($SnO_2$) thick films were fabricated into gas sensors by the method of screen printing onto alumina substrates. The particle size of $SnO_2$ was controlled by changing the ball-mill time between 0~120 h. The structural and morphological properties of these thick films were investigated using X-ray diffraction and scanning electron microscopy. The structural properties of $SnO_2$ powders showed a tetragonal phase with (110) dominant orientation. The particle size of the $SnO_2$:Ni powders after ball-mill of 120 h was about 0.05 ${\mu}m$. The gas sensitivity (S = Rg/Ra) to 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air (Ra) with that of the target gases (Rg). The sensitivity of the $SnO_2$ gas sensors was enhanced by increasing the ball-mill time. There was an association between the sensitivity of both the $CH_4$ gas and the $CH_3CH_2CH_3$ gas and the particle size of the $SnO_2$. $SnO_2$ gas sensors prepared by 72 h ball-mill showed a sensitivity of about 13 to 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas. The response time of the $SnO_2$:Ni gas sensors to the $CH_4$ gas was about 20 seconds.