• Title/Summary/Keyword: $SnCl_2$ solution

Search Result 83, Processing Time 0.025 seconds

Effects of Sb doping on the Characteristis of $SnO_2$ Transparent Electrodes ($SnO_2$ 수용전극특성에 미치는 Sb첨가의 영향)

  • 이정한
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.3
    • /
    • pp.16-21
    • /
    • 1976
  • Transparent eloctroaes of polycrystalline till-oxide films doped with antimony are prepared on the substrate of microscopic cover g1ass by modified spray method and from SnCl4 Solution. Their electrical and optical properties are investigated in relation to the surface temperature of the substrate glass and to antimony concentration in the starting materials. The sheet.resiststrace of the film electrodes and transmittance for incandescent light depen on tile antimony concentration and surface temperature of substrates at the time of making films. The transmittance increases with decrease of sheet resistance of the film. The optimum sheet.resistance was obtianed in the case of the antimony concentration 0.6(%) approximately , and the max. transmittance was 93(%).

  • PDF

Studies on the Formation of Pyrophosphate-$^{99m}T_c$ complex

  • Kim, Jae-Rok;Awh, Ok-Doo
    • Nuclear Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.19-28
    • /
    • 1980
  • An instant labelling technique for lyophilized pyrophosphate with $^{99m}$Tc is described labelling yield of about 90% is obtained at the pH range 3.5-5.5 on reconstitution with sodium pertechnetate-$^{99m}$ Tc solution. The final product is controlled by a modified two dimensional paper chromatography using 85% methanol and 0.85% saline, and biodynamic investigations are performed on white mice. Generally, the less amount of stannous chloride is used. the higher labelling yield is obtained. The molar ratio of pyrophosphate to stannous chloride of 10 : 1 ~ 50 : 1 is sufficient. The more amount of reduced unbound $^{99m}$Tc is injected, the more radioactivity is incorporated in the liver. Thus. the cause of the false bone-imaging is attributable to the presence of reduced unbound $^{99m}$Tc which is known to be well adsorbed to oxidized tin colloidals. The maximum uptake ratio of bone: liver in mice, in weight basis, 35 : 1 is achieved in lime of 60 min. or so. Tile preparation is suitable for clinical investigations on patients with bone diseases.iseases.

  • PDF

A STUDY ON IN VIVO AND IN VITRO AMALGAM CORROSION (아말감의 구강내 부식 및 인공 부식에 관한 연구)

  • Lim, Byong-Mok;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.1-33
    • /
    • 1997
  • The objective of this study was to analyze the in vitro and in vivo corrosion products of low and high copper amalgams. The four different types of amalgam alloy used in this study were Fine cut, Caulk spherical, Dispersalloy, and Tytin. After each amalgam alloy and Hg were triturated according to the directions of the manufacturer by means of the mechanical amalgamator(Amalgam mixer. Shinhung Co. Korea), the triturated mass was inserted into a cylindrical metal mold which was 12mm in diameter and 10mm in height. The mass was condensed by 150Kg/cm compressive force. The specimen was removed from the mold and aged at room temperature for about seven days. The standard surface preparation was routinely carried out by emery paper polishing under running water. In vitro amalgam specimens were potentiostatically polarized ten times in a normal saline solution at $37^{\circ}C$(potentiostat : HA-301. Hukuto Denko Corp. Japan). Each specimen was subjected to anodic polarization scan within the potential range -1700mV to+400mV(SCE). After corrosion tests, anodic polarization curves and corrosion potentials were obtained. The amount of component elements dissolved from amalgams into solution was measured three times by ICP AES(Inductive Coupled Plasma Atomic Emission Spectrometry: Plasma 40. Perkim Elmer Co. U.S.A.). The four different types of amalgam were filled in occlusal and buccal class I cavities of four human 3rd molars. After about five years the restorations were carefully removed after tooth extraction to preserve the structural details including the deteriorated margins. The occlusal surface, amalgam-tooth interface and the fractured surface of in vivo amalgam corrosion products were analyzed. In vivo and in vitro amalgam specimens were examined and analyzed metallographically by SEM(Scanning Electron Microscope: JSM 840. Jeol Co. Japan) and EDAX(Energy Dispersive Micro X-ray Analyser: JSM 840. Jeol Co. Japan). 1. The following results are obtained from in vitro corrosion tests. 1) Corrosion potentials of all amalgams became more noble after ten times passing through the in vitro corrosion test compared to first time. 2) After times through the test, released Cu concentration in saline solution was almost equal but highest in Fine cut. Ag and Hg ion concentration was highest in Caulk spherical and Sn was highest in Dispersalloy. 3) Analyses of surface corrosion products in vitro reveal the following results. a)The corroded surface of Caulk spherical has Na-Sn-Cl containing clusters of $5{\mu}m$ needle-like crystals and oval shapes of Sn-Cl phase, polyhedral Sn oxide phase. b)In Fine cut, there appeared to be a large Sn containing phase, surrounded by many Cu-Sn phases of $1{\mu}m$ granular shapes. c)Dispersalloy was covered by a thick reticular layer which contained Zn-Cl phase. d)In Tytin, a very thin, corroded layer had formed with irregularly growing Sn-Cl phases that looked like a stack of plates. 2. The following results are obtained by an analysis of in vivo amalgam corrosion products. 1) Occlusal surfaces of all amalgams were covered by thick amorphous layers containing Ca-P elements which were abraded by occlusal force. 2) In tooth-amalgam interface, Ca-P containing products were examined in all amalgams but were most clearly seen in low copper amalgams. 3) Sn oxide appeared as a polyhedral shape in internal space in Caulk spherical and Fine cut. 4) Apical pyramidal shaped Sn oxide and curved plate-like Sn-Cl phases resulted in Dispersalloy. 5) In Tytin, Sn oxide and Sn hydroxide were not seen but polyhedral Ag-Hg phase crystal appeared in internal space which assumed a ${\beta}_l$ phase.

  • PDF

The Effect of Ce Addition on Corrosion Behavior of Permanent Mold Casting Mg-4Al-2Sn-1Ca alloy (금형 주조한 Mg-4Al-2Sn-1Ca 합금의 부식 거동에 미치는 Ce 첨가의 영향)

  • Park, Kyung Chul;Kim, Byeong Ho;Jung, Jae Woong;Cho, Dae Hyun;Park, Ik Min
    • Journal of Korea Foundry Society
    • /
    • v.34 no.6
    • /
    • pp.187-193
    • /
    • 2014
  • In the present work, the effect of adding Ce on the corrosion behavior of Mg-4Al-2Sn-1Ca alloy was investigated. The studied alloys were fabricated by gravity casting method and a potentiodynamic polarization, A.C. impedance and hydrogen evolution tests were carried out in a 3.5% NaCl solution with pH 7.2 at room temperature to measure the corrosion properties of Mg-4Al-2Sn-1Ca-xCe alloys. The microstructure of the Mg-4Al-2Sn-1Ca alloy was composed of ${\alpha}$-Mg, Mg17Al12, Mg2Sn and CaMgSn phase. Also, a $Al_{11}Ce_3$ phase was newly formed by the addition of Ce. With an increase of the Ce contents, the microstructure became refined and the corrosion resistance improved.

Synthesis and Characterization of SnO2 Nanoparticles by Hydrothermal Processing

  • Kim, Ho-Jung;Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.415-418
    • /
    • 2011
  • Tin (IV) dioxide ($SnO_2$) has attracted much attention due to its potential scientific significance and technological applications. $SnO_2$ nanoparticles were prepared under low temperature and pressure conditions via precipitation from a 0.1 M $SnCl_4{\cdot}5H_2O$ solution by slowly adding $NH_4OH$ while rapidly stirring the solution. $SnO_2$ nanoparticles were obtained from the reaction in the temperature range from 130 to $250^{\circ}C$ during 6 h. The microstructure and phase of the synthesized tin oxide particles were studied using XRD and TEM analyses. The average crystalline sizes of the synthesized $SnO_2$ particles were from 5 to 20 nm and they had a narrow distribution. The average crystalline size of the synthesized particles increased as the reaction temperature increased. The crystalline size of the synthesized tin oxide particles decreased with increases in the pH value. The X-ray analysis showed that the synthesized particles were crystalline, and the SAED patterns also indicate that the synthesized $SnO_2$ nanoparticles were crystalline. Furthermore, the morphology of the synthesized $SnO_2$ nanoparticles was as a function of the reaction temperature. The effects of the synthesis parameters, such as the pH condition and reaction temperature, are also discussed.

Synthesis of Nanosized SnS-TiO2 Photocatalysts with Excellent Degradation Effect of TBA under Visible Light Irradiation

  • Meng, Ze-Da;Zhu, Lei;Ullah, Kefayat;Ye, Shu;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.455-461
    • /
    • 2015
  • SnS-$TiO_2$ nanocomposites are synthesized using simple, cheap, and less toxic $SnCl_2$ as the tin (II) precursor. The prepared nanoparticles are characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectra (DRS). The XRD and TEM results indicate that the prepared product has SnS nanoparticles and a grain diameter of 30 nm. The DRS demonstrate that SnS-$TiO_2$ possesses the absorption profile across the entire visible light region. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and photocatalytic effect increase with the modified SnS. Excellent catalytic degradation of Texbrite BA-L (TBA) solution is observed using the SnS-$TiO_2$ composites under visible light irradiation. It is proposed that both the strong visible light absorption and the multiple exciton excitations contribute to the high visible light photocatalytic activity.

Preparation of$SnO_2$-based gas sensor by Sol-Gel process

  • Bui, Anh-Hoa;Baek, Won-Woo;Lee, Sang-Tae;Jun, Hee-Kwon;Lee, Duk-Dong;Huh, Jeung-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.135-135
    • /
    • 2003
  • This paper presents the preparation of SnO$_2$ films by Sol-Gel process and using spin coating method, and their sensing properties in CO gas. Experimental procedure consisted of following steps: (1) Tin chloride(SnCl$_4$) and Ammonium hydrogen carbonate (NH$_4$HCO$_3$) were used as precursors; (2) the Sol solution with concentration of about 10wt% SnO$_2$ was prepared from washed Gel-precipitate for spin coating step; (3) thereafter, the coating solution was dropped onto the alumina (Al$_2$O$_3$) substrate that was then spun, the spin coating was carried out with total 10 times; (4) finally, the films were calcined for 3 hours at 50$0^{\circ}C$ or higher temperature (600, 700, 800 or 90$0^{\circ}C$) in order to obtain various gram sizes. The average grain size was calculated by Scherrer's equation using main peaks in XRD spectra; meanwhile the thickness, microstructure and surface morphology of the films were observed by FE-SEM.

  • PDF

The Effect of Al and Sn Additions on Corrosion Behavior of Permanent Mold Casting Magnesium Alloy (금형 주조한 마그네슘 합금의 부식 거동에 미치는 Al 및 Sn의 영향)

  • Kim, Byeong Ho;Seo, Jae Hyun;Park, Kyung Chul
    • Journal of Korea Foundry Society
    • /
    • v.35 no.2
    • /
    • pp.36-43
    • /
    • 2015
  • In this study, the influences of aluminum and tin additions (individual and combined) on corrosion behavior of magnesium alloy have been determined. The studied alloys were fabricated by permanent mold casting method to measure the corrosion properties, a potentiodynamic test, hydrogen evolution test and immersion test were carried out in a 3.5% NaCl solution at pH 7.2. From the results of microstructure analysis, the Mg-9Al-1Zn alloy was found to be composed of ${\alpha}$-Mg and rod-like $Mg_{17}Al_{12}$ phase and the Mg-5Sn-5Al-1Zn alloy was found to be composed of ${\alpha}$-Mg, rod-like $Mg_{17}Al_{12}$ and $Mg_2Sn$ phases. In the case of the Mg-9Sn-1Zn alloy, the microstructure was composed of ${\alpha}$-Mg and eutectic $Mg_2Sn$ phase. With Sn addition (individual and combined), the corrosion resistance of the Mg alloys improved.

Activity Measurement in Liquid Zn-(In, Sn) Alloy Using E.M.F Method (기전력법에 의한 용융 ZR-(In, Sn) 합금의 활동도 측정)

  • Jung Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.47-53
    • /
    • 2005
  • The E.M.F. of the galvanic cell with fused salt was measured to determine the activities of zinc at 720-860 K over the entire composition range of liquid Zn-In and Zn-Sn alloys. The cell used was as follows: $$(-)W{\mid}Zn(pure){\mid}Zn^{2+}(KCl-LiCl){\mid}Zn(in\;Zn-In\;or\;Zn-Sn\;alloy){\mid}W(+)$$ The activities of zinc in the alloys showed positive deviation from Raoult's law over the entire composition range. The activity of cadmium and some thermodynamic functions such as Gibbs free energy, enthalpy and entropy were derived from the results by the thermodynamic relationship. The comparison of the results and the literature data was made. The liquid Zn-In and Zn-Sn alloys are found to be close tn the regular solution. The concentration fluctuations in long wavelength limit, $S_{cc}(o)$, in the liquid alloy were calculated from the experimental results.

Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS (수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.269-276
    • /
    • 2014
  • This study was aimed to develop catalytic system for the dry-based reduction of oxidized mercury ($Hg^{2+}$) to elemental mercury ($Hg^0$) which is one of the most important components comprising mercury continuous emission monitoring system (Hg-CEMS). Based on the standard potential in oxidation-reduction reaction, transition metals including Fe, Cu, Ni and Co were selected as possible candidates for catalyst proceeding spontaneous reduction of $Hg^{2+}$ into $Hg^0$. These transition metal catalysts revealed high activity for reduction of $Hg^{2+}$ into $Hg^0$ in the absence of oxygen in reactant gases. However, their activities were greatly decreased in the presence of oxygen, which was attributed to the transformation of transition metals by oxygen to the corresponding transition metal oxides with less catalytic activity for the reduction of oxidized mercury. Hydrogen supplied to the reactant gases significantly enhanced $Hg^{2+}$ reduction activity even in the presence of oxygen. It might be due to occurrence of combustion reaction between $H_2$ and $O_2$ causing the consumption of $O_2$ at such high reaction temperature at which oxidized mercury reduction reaction took place. Because the system showed high activity for $Hg^{2+}$ reduction to $Hg^0$, which was compatible to that of wet-chemistry technology using $SnCl_2$ solution, the catalytic reduction system of Fe catalyst with the supply of $H_2$ could be employed as a commercial system for the reduction of oxidized mercury to elemental mercury.