• 제목/요약/키워드: $SiO_2nano-particles$

검색결과 84건 처리시간 0.027초

대기압 반응로 내 코로나 이온을 이용한 나노입자 형상의 제어 (Corona ion Assisted Nano-Particle Morphology Control in an Atmospheric Pressure Furnace Reactor)

  • 안강호;윤진욱;김영원
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.710-715
    • /
    • 2002
  • The spherical nonagglomerated and uniform nanometer-size SiO$_2$particles are synthesized by the injection of TEOS vapor, irons and reaction gas in a furnace. Ions are generated by corona discharge and these ions charge SiO$_2$particles. As a result, spherical, nonagglomerated and ultrafine particles are generated in various conditions. Their morphology, charging portion and size distribution are examined by using TEM, ESP and SMPS. As the applied voltage of electrode changes from 0 to 5.0 kV, it is observed that the melon diameter of SiO$_2$particle decreases from 94 nm to 42 nm.

Au 나노 입자를 이용한 floating gate memory에서 $SiO_2$ or SiON 터널링 게이트 산화막의 영향 (Effects of $SiO_2$ or SiON tunneling gate oxide on Au nano-particles floating gate memory)

  • 구현모;이우현;조원주;구상모;정홍배;이동욱;김재훈;이민성;김은규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.67-68
    • /
    • 2006
  • Floating gate non-volatile memory devices with Au nano-particles embedded in SiON or $SiO_2$ dielectrics were fabricated by digital sputtering method. The size and the density of Au are 4nm and $2{\times}10^{-12}cm^{-2}$, respectively. The floating gate memory of MOSFET with 5nm tunnel oxide and 45nm control oxide have been fabricated. This devices revealed a memory effect which due to proGrainming and erasing works perform by a gate bias stress repeatedly.

  • PDF

Microstructural Wear Mechanism of $Al_2O_3-5$ vol% SiC nanocomposite and $Si_3N_4$Ceramics

  • Riu, Doh-Hyung;Kim, Yoon-Ho;Lee, Soo-Wohn;Koichi Niihara
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.179-185
    • /
    • 2001
  • Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the $Al_2O_3$-5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.

  • PDF

$Al_2O_3-SiC$ 나노복합체의 방전 플라즈마 소결 특성 및 기계적 물성 (Sintering behavior and mechanical properties of the $Al_2O_3-SiC$ nano-com-posite using a spark plasma sintering technique)

  • 채재홍;김경훈;심광보
    • 한국결정성장학회지
    • /
    • 제13권6호
    • /
    • pp.309-314
    • /
    • 2003
  • 방전 플라즈마 소결법을 적용하여 $Al_2O_3$-SiC 나노 복합체를 150$0^{\circ}C$ 이하의 온도에서 완전치밀화를 이루었다. 제조된 $Al_2O_3$-SiC 복합체는 이상 결정립 성장 없이 매우 균질한 미세구조를 형성하고 있는데, 첨가된 SiC 입자는 주로 결정립 내 및 결정립계에 존재하면서 $Al_2O_3$기지상에서 결정립 성장을 억제하는데 매우 유호하였음을 확인 할 수 있다. 한편, SiC 입자의 첨가는 크랙 회절 및 브릿징 등에 의해서 유도된 재료 강도 및 인성 강화 기구에 의해서 $Al_2O_3$-SiC 복합체의 기계적 물성을 크게 향상시켰다.

에폭시기반 나노와 마이크로 혼합 콤포지트의 열적 그리고 기계적특성 (Thermal and Mechanical Properties for Micro-and-Nano- Mixture Composites Based Epoxy)

  • 오충연;유병복;박재준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.31-31
    • /
    • 2010
  • Nano particles (10nm $SiO_2$) were silane-treated in order to modify the surface characteristics in a epoxy nanocomposite. Then, micro particles ($3{\mu}m$ SiO2) were poured into the epoxy nanocomposite using various mixing process and epoxy/micro-and-nanomixed composites (EMNC) were prepared. The thermal (Tg) and mechanical (tensile and flexural strength) properties were measured by DSC, DMA and UTM and the data was estimated by Weibull plot.

  • PDF

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1996년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

금 나노입자 형성을 이용한 계층구조 SiO2 코팅층의 제조 및 표면 특성 (Synthesis and Surface Properties of Hierarchical SiO2 Coating Layers by Forming Au Nanoparticles)

  • 김지영;김은경;김상섭
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.53-58
    • /
    • 2013
  • Superhydrophobic $SiO_2$ layers with a micro-nano hierarchical surface structure were prepared. $SiO_2$ layers deposited via an electrospray method combined with a sol-gel chemical route were rough on the microscale. Au particles were decorated on the surface of the microscale-rough $SiO_2$ layers by use of the photo-reduction process with different intensities ($0.11-1.9mW/cm^2$) and illumination times (60-240 sec) of ultraviolet light. With the aid of nanoscale Au nanoparticles, this consequently resulted in a micro-nano hierarchical surface structure. Subsequent fluorination treatment with a solution containing trichloro(1H,2H,2H,2H-perfluorooctyl)silane fluorinated the hierarchical $SiO_2$ layers. The change in surface roughness factor was in good agreement with that observed for the water contact angle, where the surface roughness factor developed as a measure needed to evaluate the degree of surface roughness. The resulting $SiO_2$ layers revealed excellent repellency toward various liquid droplets with different surface tensions ranging from 46 to 72.3 mN/m. Especially, the micro-nano hierarchical surface created at an illumination intensity of $0.11mW/cm^2$ and illumination time of 60 sec showed the largest water contact angle of $170^{\circ}$. Based on the Cassie-Baxter and Young-Dupre equations, the surface fraction and work of adhesion for the micronano hierarchical $SiO_2$ layers were evaluated. The work of adhesion was estimated to be less than $3{\times}10^{-3}N/m$ for all the liquid droplets. This exceptionally small work of adhesion is likely to be responsible for the strong repellency of the liquids to the micro-nano hierarchical $SiO_2$ layers.

The Partial Discharge Resistances of Epoxy-Nano-and-Micro Composites

  • Lee, Chang-Hoon;Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.89-91
    • /
    • 2010
  • Partial discharge (PD) resistances were investigated for three types of samples: original epoxy resins, epoxy micro composites with and without the silane processing, and mixture composites with micro and nano particles. The PD was applied to these materials using rod, gap, and plane electrodes. The partial discharge resistance found in the micro composites was better than that found in the original epoxy resin. Moreover, the mixture composites of $SiO_2$ nano and micro particles had much larger resistances than the original epoxy resin or microcomposites. It can be regarded that this excellent property was due to the fact that the nano particles have a dense structure between the micro particles.

에폭시기반 마이크로 그러고 나노입자가 혼합된 콤포지트의 기계적특성 (Mechanical Properties for Micro-and-Nano- Mixture Composites Based Epoxy Resins)

  • 권순석;최보성;백관현;이창훈;박재준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.84-84
    • /
    • 2010
  • Nano particles (10nm SiO2) were silane-treated in order to modify the surface characteristics in a epoxy nanocomposite. Then. micro particles ($3{\mu}m$ SiO2) were poured into the epoxy nanocomposite using various mixing process and epoxy/ micro-and-nano- mixed composites (EMNC) were prepared. The thermal (Tg) and mechanical (tensile and flexural strength) properties were measured by DMA and UTM and the data was estimated by Weibull plot.

  • PDF