• Title/Summary/Keyword: $SiO_2$ particle

Search Result 480, Processing Time 0.027 seconds

Effect of SiC Particles Size on the Densification of $Al_2O_3-SiC$ Composite During Pressureless Sintering ($Al_2O_3-SiC$ 복합재료의 상압소결시 치밀화에 미치는 SiC 원료분말의 크기영향)

  • 채기웅
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.11
    • /
    • pp.1261-1265
    • /
    • 1999
  • Effect of SiC particle size of the densification of Al2O3-SiC composite during pressureless sintering was investigated. Two types of SiC powders having average particle size of 0.15${\mu}{\textrm}{m}$ and 3${\mu}{\textrm}{m}$ were used. Densification rate of the specimen containing 0.15${\mu}{\textrm}{m}$ SiC particles was slower than that of the specimen containg 3${\mu}{\textrm}{m}$ SiC particles. Although the relative density of the specimen containing 0.15${\mu}{\textrm}{m}$ SiC particles was below 90% of theoretical density after sintering at 155$0^{\circ}C$ the complete closure of open pores occurred. Therefore full densification could be obtained by subsequent HIP. On the other hand in the specimen containing 3${\mu}{\textrm}{m}$ SiC particles the complete closed pore was observed at 95% of theoretical density. Such a fast pore closure in the specimen containing 0.15${\mu}{\textrm}{m}$ SiC particles is likely to occur as a result of dense reaction layer formation on the specimen surface which is attributed to the high reactivity of small size particles with sintering atmosphere.

  • PDF

The Cathodoluminance Properties of $Y_2SiO_5$:Ce Blue Phosphor with Surface Coatings ($Y_2SiO_5$:Ce 청색 형광체의 표면 코팅에 따른 음극선 발광특성)

  • 음현중;김성우;이임렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.590-593
    • /
    • 1999
  • $Y_2SiO_5$:Ce was considered as blue phosphor for field emission display because it had an excellent resistance against brightness saturation. But unfortunately It hadn't a sufficient brightness to be applied to FED. In this experiment It-$In_2O_3$, MgO and $SiO_2$ were coated onto $Y_2SiO_5$:Ce phosphor in order to improve the cathodoluminance(CL properties. The coating structures were identified to be the crystalline phases of $In_2O_3$ and MgO respectively. They had fine particle-like shape and were distributed on the surface of $Y_2SiO_5$:Ce phosphor. It was found that the CL efficiency of $Y_2SiO_5$:Ce phosphors were decreased after coatings with In20:j and MgO in voltage range from 500 V to 5 kV. But the brightness of $Y_2SiO_5$:Ce phosphor was increased after coating of 5 0 2 . And also the aging test showed that $In_2O_3$ coating improved the life time of $Y_2SiO_5$:Ce phosphor.

  • PDF

CFD Explanation and Verification of Multi Inner Stage Cyclone for The Particle Removal (미세입자 제거를 위한 Multi Inner Stage Cyclone의 CFD 해석 및 검증)

  • Lee, Sang Jun;Kim, Chun-Lee;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.149-156
    • /
    • 2013
  • In this paper, Commercial program, STAR-CCM+, was used for computer simulation. And also Multi Inner Stage(MIS) cyclone which especially designed for the real experiments of particle removal efficiency. Under negative pressure condition of outlet, computer simulation was performed to predict the removal efficiency for $5{\mu}m$ and $10{\mu}m$ particles by using a turbulence model and lagrangian method. The simulation results are 55.7% and 64.1% for $5{\mu}m$ and $10{\mu}m$ particles, respectively. To compare the simulation results with the actual test of MIS cyclone, we generated the $SiO_2$ particles by heat reactor. Although removal efficiency of actual tests is 63~76% at different flow rate, the size of $SiO_2$ particles which confirmed by SEM(scanning electron microscope) and WAPS(wide range aerosol particle spectrometer) is too small(15~30nm) to compare each results. And so the alternative experiments were performed by using commercial alumina particles ($5{\mu}m$, $10{\mu}m$ and $20{\mu}m$). It was shown that the actual removal efficiency, 76~95%, from MIS cyclone is higher than simulated one.

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

Thermal Residual Stress Relaxation Behavior of Alumina/SiC Nanocomposites (Alumina/SiC 나노복합재료에서의 잔류 열응력 완화거동에 관한 연구)

  • Choa, Y.H.;Niihara, K.;Ohji, T.;Singh, J.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.04b
    • /
    • pp.11-11
    • /
    • 2002
  • Plastic deformation was observed by TEM around the intragranular SiC particles in the $Al_2O_3$ matrix for $Al_2O_3/SiC$ nanocomposite system. The dislocations are generated at selected planes and there is a tendency for the dislocations to form a subgrain boundary structure with low-angel grain boundaries and networks. In this study, dislocation generated in the $Al_2O_3$ matrix during cooling down from sintering temperatures by the highly localized thermal stresses within and/or around SiC particles caused from the thermal expansion mismatch between $Al_2O_3$ matrix and SiC particle was observed. In monolithic $Al_2O_3$ and $Al_2O_3/SiC$ microcomposite system. These phenomena is closely related to the plastic relaxation of the elastic stress and strain energy associated with both thermal misfitting inclusions and creep behaviors. The plastic relaxation behavior was explained by combination of yield stress and internal stress.

  • PDF

Effect of Turbid Water on the Phytoplankton Community in Imha Reservoir (탁수가 임하호 식물플랑크톤에 미치는 영향)

  • Park, Jung-Won;Yu, Sam-Hwan;Kim, Soon-Young;Lee, Jong-Eun;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1671-1678
    • /
    • 2008
  • We investigated the effect of the turbid water on the phytoplankton community in the 4 sites of Imha reservoir. The turbidity of water was proportional to the concentrations of $SiO_2$-Si. Therefore, as the turbidity of water grow, the concentration of $SiO_2$-Si increased. And the both the turbidity of water and the concentrations of $SiO_2$-Si were increased as the water run deep. The concentration of chlorophyll-a decreased as the depth of water increased. Seventy phytoplankton taxa were identified and the most abundant group was Chlorophyceae consisting of 32 taxa (46%), and Cyanophyceae and Bacillariophyceae consisted of 12 taxa (17%). And Euglenophyceae, Synulophyceae, Cryptophyceae and Dinophyceae consisted of 6 taxa (9%), 4 taxa (6%), 3 taxa (4%) and 1 taxon (1%), respectively in Imha reservoir. The concentrations of phytoplankton were increased according to the turbidity of water because of the high amount of organic nutrition which is presented with turbid water. And especially, the concentrations of nitrogen increased easily because of the weak binding to the soil particle. In conclusion, total nitrogen and $SiO_2$-Si flowed into the Imha reservoir with soil particle, and these inorganic nutritions affect the growth of algae.

Preparation of Nanoporous Silica Particles containing Various Pore Sizes from Silicic Acid by Spray Pyrolysis (분무열분해 공정에 의한 규산수용액으로부터 다양한 미세기공을 갖는 실리카 나노다공체 제조)

  • Kim, Sun Kyung;Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.65-72
    • /
    • 2016
  • Nanoporous $SiO_2$ particles containing different pore volume and size were prepared from silicic acid by a spray pyrolysis. The pore size, pore volume and particle size could be controlled with varying the precursor concentration, reaction temperature, and amount of organic templates such as Urea and poly ethylene glycol (PEG). The pore size distribution, pore volume and specific surface area of as-prepared particles were analyzed by BET and BJH methods, and the average particle sizes were measured by a laser diffraction method. The nanoporous $SiO_2$ particles ranged $0.6-0.9{\mu}m$ in diameter were successfully synthesized and the average particle size increased as the silicic acid concentration increased. The morphology of nanoporous $SiO_2$ particles was spherical and pores ranged 1 - 40 nm in diameter were measured in the particles. In case of Urea added into silicic acid, it showed no much difference in the morphology, pore size and pore volume at different Urea concentration. On the other hand, when PEG was added, it was clearly observed that pore diameter and pore volume of the particles surface increased with respect to PEG concentration.

The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process (SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향)

  • Yun, Gi-Seok;Yang, Beom-Seok;Lee, Jong-Hyeon;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.

The Effect of SiO2 Shell on the Suppression of Photocatalytic Activity of TiO2 and ZnO Nanoparticles

  • Lee, Min Hee;Patil, Umakant Mahadev;Kochuveedu, Saji Thomas;Lee, Choon Soo;Kim, Dong Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3767-3771
    • /
    • 2012
  • In this study, we investigate the potential use of $TiO_2@SiO_2$ and $ZnO@SiO_2$ core/shell nanoparticles (NPs) as effective UV shielding agent. In the typical synthesis, $SiO_2$ was coated over different types of $TiO_2$ (anatase and rutile) and ZnO by sol-gel method. The synthesized $TiO_2@SiO_2$ and $ZnO@SiO_2$ NPs were characterized by UV-Vis, XRD, SEM and TEM. The UV-vis absorbance and transmittance spectra of core@shell NPs showed an efficient blocking effect in the UV region and more than 90% transmittance in the visible region. XRD and SAED studies confirmed the formation of amorphous $SiO_2$ coated over the $TiO_2$ and ZnO NPs. The FESEM and TEM images shows that coating of $SiO_2$ over the surface of anatase, rutile $TiO_2$ and ZnO NPs resulted in the increase in particle size by ~30 nm. In order to study the UV light shielding capability of the samples, photocatalytic degradation of methylene blue dye on $TiO_2@SiO_2$ and $ZnO@SiO_2$ NPs was performed. Photocatalytic activity for both types of $TiO_2$ NPs was partially suppressed. In comparison, the photocatalytic activity of ZnO almost vanished after the $SiO_2$ coating.

Gas Permeation of SiC Membrane Coated on Multilayer γ-Al2O3 with a Graded Structure for H2 Separation

  • Yoon, Mi-Young;Kim, Eun-Yi;Kim, Young-Hee;Whang, Chin-Myung
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.451-456
    • /
    • 2010
  • A promising candidate material for a $H_2$ permeable membrane is SiC due to its many unique properties. A hydrogen-selective SiC membrane was successfully fabricated on the outer surface of an intermediate multilayer $\gamma-Al_2O_3$ with a graded structure. The $\gamma-Al_2O_3$ multilayer was formed on top of a macroporous $\alpha-Al_2O_3$ support by consecutively dipping into a set of successive solutions containing boehmite sols of different particle sizes and then calcining. The boehmite sols were prepared from an aluminum isopropoxide precursor and heated to $80^{\circ}C$ with high speed stirring for 24 hrs to hydrolyze the precursor. Then the solutions were refluxed at $92^{\circ}C$ for 20 hrs to form a boehmite precipitate. The particle size of the boehmite sols was controlled according to various experimental parameters, such as acid types and acid concentrations. The topmost SiC layer was formed on top of the intermediate $\gamma-Al_2O_3$ by pyrolysis of a SiC precursor, polycarbosilane, in an Ar atmosphere. The resulting amorphous SiC-on-$Al_2O_3$ composite membrane pyrolyzed at $900^{\circ}C$ possessed a high $H_2$ permeability of $3.61\times10^{-7}$ $mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and the $H_2/CO_2$ selectivity was much higher than the theoretical value of 4.69 in all permeation temperature ranges. Gas permeabilities through a SiC membrane are affected by Knudsen diffusion and a surface diffusion mechanism, which are based on the molecular weight of gas species and movement of adsorbed gas molecules on the surface of the pores.