• 제목/요약/키워드: $SiO_2$ nano composite

검색결과 72건 처리시간 0.026초

$Al_2O_3$/SiC Hybrid-Composite의 제조 (Fabrication of $Al_2O_3$/SiC Hybrid-Composite)

  • 이수영;임경호;전병세
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.103-112
    • /
    • 1996
  • $Al_2O_3/SiC$ Hybrid-Composite이 일반적인 분말공정에 의하여 제조되었다. 소결시 $\gamma-Al_2O_3에서 $\alpha-Al_2O_3$로의 전이에 seed역할을 하는 $\alpha-Al_2O_3의 첨가는 균일한 미세구조를 발달시켜 강도의 증진을 가져왔다. nano size의 SiC의 첨가는 $Al_2O_3$의 소결성과 입성장에 영향을 미쳐 파괴강도의 증진을 가져왔다. $Al_2O_3/SiC$ nano-Composite에 SiC plates의 첨가는 파괴강도의 감소를 가져왔지만, 상대적으로 파괴인성은 증진되었다. SiC plates에 nitride (BN, $Si_3N_4$ 코팅을 할 경우 crack deflection을 더욱 유발하여 파괴인성이 증진되었다.

  • PDF

$Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향 (The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite)

  • 이수영;임경호;전병세
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF

SiO2 나노 콜로이달 첨가량에 따른 Si3N4의 고온강도 특성 (Characterization of High Temperature Strength of Si3N4 Composite Ceramics According to the Amount of SiO2 Nano Colloidal Added)

  • 남기우;이건찬
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1233-1238
    • /
    • 2009
  • This study analyzed the characterization of high temperature strength of $Si_3N_4$ composite ceramics additive based on variations in the amount of nano colloidal $SiO_2$ added. Semi-elliptical cracks about 100 ${\mu}m$ length were obtained from a Vickers indenter using a load of 24.5 N. The results showed that the heat-treated smooth specimens with $SiO_2$ nano colloidal coating exhibited the highest bending strength at 0.0 wt% $SiO_2$ nano colloidal added, which is amounted to a 187 % increase over that of smooth specimen. Limiting temperature for bending strength of crack-healed zone for bending strength was about 1273 K. However, the bending strength of SSTS-3 and SSTS-4 was considerably increased while that of SSTS-1 and SSTS-2 was decreased at a temperature of 1,573K.

Preparation and Characterization of Porous Silicon and Carbon Composite as an Anode Material for Lithium Rechargeable Batteries

  • Park, Junsoo;Lee, Jae-Won
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.15-20
    • /
    • 2015
  • The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si ($64.52m^2g^{-1}$) is much higher than that before etching Si/MgO ($4.28m^2g^{-1}$) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.

폴리머 Precursor를 이용한 in-situ 나노 복합체의 제조 : I. 질화규소 표면에서의 $SiO_2$ 피막형성에 따른 폴리머의 흡착거동 (Fabrication of in-situ Formed Namo-Composite Using Polymer Precursor : I. Adsorption Behavior of Polymer Followed $SiO_2$ Surface formation onto Silicon Nitride Surface)

  • 정연길;백운규
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.280-287
    • /
    • 2000
  • Adsorption behavior and amount of phenolic resin followed silica (SiO2) formation onto silicon nitride(Si3N4) surface were investigated using electrokinetic sonic amplitude (ESA) technique and with UV spectrometer, to fabricate Si3N4/SiC nano-composite based on reaction between SiO2 formed and phenolic resin absorbed onto Si3N4 particle. The amount of SiO2 formed and carbon from phenolic resin absorbed onto Si3N4 surface were calculated quantitatively to adjust the reaction between SiO2 and phenolic resin, resulting in no residual SiO2 and carbon. As a result, pre-heated tempeature for optimized reaction was below 25$0^{\circ}C$, in which there was no residual SiO2 and carbon.

  • PDF

전기방사를 이용한 SiO2/nano ionomer 복합 막의 제조 및 고온 PEMFC에의 응용 (Development of the SiO2/Nano Ionomer Composite Membrane for the Application of High Temperature PEMFC)

  • 나희수;황형권;이찬민;설용건
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.569-578
    • /
    • 2011
  • The $SiO_2$ membranes for polymer electrolyte membrane fuel cell (PEMFC) are preapared by electrospinning method. It leads to high porosity and surface area of membrane to accommodate the proton conducting materials. The composite membrane was prepared by impregnating of Nafion ionomer into the pores of electrospun $SiO_2$ membranes. The $SiO_2$:heteropolyacid (HPA) nano-particles as a inorganic proton conductor were prepared by microemulsion process and the particles are added to the Nafion ionomer. The characterization of the membranes was confirmed by field emission scanning electron microscope (FE-SEM), thermogravimetry analysis (TGA), and single cell performance test for PEMFC. The Nafion impregnated electrospun $SiO_2$ membrane showed good thermal stability, satisfactory mechanical properties and high proton conductivity. The addition of the $SiO_2$:HPA nano-particle improved proton conductivity of the composite membrane, which allow further extension for operation temperature in low humidity environments. The composite membrane exhibited a promising properties for the application in high temperature PEMFC.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1996년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Organic-inorganic Nano Composite Membranes of Sulfonated Poly(Ether Sulfone-ketone) Copolymer and $SiO_2$ for Fuel Cell Application

  • Lee, Dong-Hoon;Park, Hye-Suk;Seo, Dong-Wan;Kim, Whan-Gi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.487-488
    • /
    • 2006
  • Novel bisphenol-based wholly aromatic poly(ether sulfone-ketone) copolymer containing pendant sulfonate groups were prepared by direct aromatic nucleophilic substitution polycondensation of 4,4-difluorobenzophenone, 2,2'-disodiumsulfonyl-4,4'-fluorophenylsulfone (40mole% of bisphenol A) and bisphenol A. Polymerization proceeded quantitatively to high molecular weight in N-methyl-2-pyrrolidinone at $180^{\circ}C$. Organic-inorganic composite membranes were obtained by mixing organic polymers with hydrophilic $SiO_2$ (ca. 20nm) obtained by sol-gel process. The polymer and a series of composite membranes were studied by FT-IR, $^1HNMR$, differential scanning calorimetry (DSC) and thermal stability. The proton conductivity as a function of temperature decreased as $SiO_2$ content increased, but methanol permeability decreased. The nano composite membranes were found to posse all requisite properties; Ion exchange capacity (1.2meq./g), glass transition temperatures $(164-183\;^{\circ}C)$, and low affinity towards methanol $(4.63-1.08{\times}10^{-7}\;cm^2/S)$.

  • PDF